Opendata, web and dolomites

NIRLAMS SIGNED

NIR Light Harvesting in Artificial Protein-Lipid-Chromophores Coassembled Molecular System

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NIRLAMS project word cloud

Explore the words cloud of the NIRLAMS project. It provides you a very rough idea of what is the project "NIRLAMS" about.

added    researched    upconversion    environment    aqueous    shockley    conversion    bonding    depleting    contributed    energy    nonpolar    oxygenated    band    limitation    photon    practical    cells    prevent    photons    polymers    form    fossils    phenomenon    deoxygenated    though    uc    oxygen    system    dyes    putting    function    assembly    innovative    solid    conceptual    nir    thick    fabrication    spectrum    economic    ideal    coassembly    efficient    community    region    filed    annihilation    chromophore    organic    lipid    domains    broaden    biological    emergence    green    hydrophobic    quenching    fuels    sub    mostly    constraints    carbon    vis    synthetic    overcoming    hope    light    inflow    solubilize    transmitted    fact    upconverting    limited    responsive    solution    harvesting    immensely    protein    invasive    introducing    constantly    device    reported    photonic    tta    limit    network    molecular    queisser    emission    co    scientific    solubility    everlasting    solvents    solar    irradiance    chromophores    pressure    gap    overcome    triplet   

Project "NIRLAMS" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 203˙852 €
 EC max contribution 203˙852 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 203˙852.00

Map

 Project objective

The depleting fossils fuels added by their high carbon emission have been constantly putting pressure on scientific community to find an economic solution in the form of green energy. The utilization of everlasting solar energy is possible solution which has been researched for a long now but has constraints of Shockley Queisser Limit. The recent emergence of photon upconversion has given hope to overcome this limit by upconverting the transmitted sub band gap photons to band gap responsive light. Among the existing UC phenomenon triplet-triplet annihilation based photon upconversion (TTA-UC) leading the way because of its function at sub solar irradiance and 1.5 solar spectrum. Most of the TTA-UC systems are limited to Vis to Vis UC which though have contributed immensely for conceptual development of the filed; however for practical applications in photonic devices NIR to Vis TTA-UC would be more ideal. This is because; (1) NIR is low energy non-invasive light which is useful for biological applications and (2) can overcome the Shockley Queisser Limit of solar cells. On the other hand NIR to Vis TTA-UC systems are although reported they are mostly limited to deoxygenated organic solvents which have limitation of device fabrication. This is due to low solubility of NIR to Vis dyes in synthetic polymers and quenching by molecular oxygen. Therefore, the present proposal is aimed at overcoming these issues by introducing an innovative approach of protein-lipid-chromophores co-assembly both for aqueous and solid state NIR to Vis TTA-UC in oxygenated environment. The proposed approach is supported by the fact that nonpolar domains of protein-lipid coassembly can solubilize the hydrophobic NIR to Vis dyes and thick H-bonding network of protein can prevent oxygen inflow into chromophore region. The proposed project would lead to a new conceptual development for efficient solar upconversion and will broaden the solar light harvesting range for solar energy conversion system

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NIRLAMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NIRLAMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

INFANTPATTERNS (2019)

Development of kinematic and muscle patterns in preterm infants

Read More