Explore the words cloud of the EMPAtHy project. It provides you a very rough idea of what is the project "EMPAtHy" about.
The following table provides information about the project.
Coordinator |
VIB VZW
Organization address contact info |
Coordinator Country | Belgium [BE] |
Total cost | 166˙320 € |
EC max contribution | 166˙320 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-09-01 to 2021-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | VIB VZW | BE (ZWIJNAARDE - GENT) | coordinator | 166˙320.00 |
BACKGROUND: Pulmonary arterial hypertension (PAH) is a devastating disease, characterized by a dramatic increase in pulmonary arterial pressure and an intense remodeling of small intrapulmonary arteries. With the exception of the lung replacement therapy, PAH remains an incurable disease with poor survival. Recent studies have shown that in PAH, rewiring of the metabolism of the lung endothelial cells (ECs) promotes vascular remodeling. However, these studies overlooked that lung ECs are exposed to diverse microenvironments in vivo (various hemodynamic forces and stimuli), which might result in their phenotypic and metabolic heterogeneity, though this has never been investigated. OBJECTIVES & EXPERIMENTAL APPROACH: In order to characterize, for the 1st time, the lung EC heterogeneity in PAH, identify EC subsets, and determine in an unbiased way the metabolic gene expression profiles of these EC subsets, I will use single-cell RNA-sequencing (scRNA-seq) on freshly isolated lung ECs from PAH patients and from an animal model of PH. As proof-of-concept, I will evaluate the effects of a new metabolic therapy on these EC subsets, in vivo, in comparison to a clinically-used, ameliorative but not curative, PAH therapy. This approach, already validated in the host lab, promises to lay the foundation of a new paradigm in PAH where lung ECs are phenotypically and metabolically heterogeneous. It will yield novel insights into PAH pathophysiology, identify specific EC subpopulations driving the vascular remodeling process as well as new potential metabolic targets. CAREER DEVELOPMENT: Combining my expertise on PAH (PhD thesis) together with state-of-the-art frontline technology (scRNA-seq) and innovative science (EC metabolism) (within the host lab) in a multi-disciplinary project and international research environment will ensure successful achievement of the project goals, enhance my scientific output and offer me a highly competitive basis for my future career in academia.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EMPATHY" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "EMPATHY" are provided by the European Opendata Portal: CORDIS opendata.
Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease
Read MorePreservation and Adaptation in Turkish as a Heritage Language (PATH) - A Natural Language Laboratory in a Small Dutch Town
Read MoreThe Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.
Read More