Opendata, web and dolomites

S-PSK-PSK-MJ-PSC SIGNED

STABLE PEROVSKITE-PEROVSKITE MULTIJUNCTION SOLAR CELLS

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "S-PSK-PSK-MJ-PSC" data sheet

The following table provides information about the project.

Coordinator
KARLSRUHER INSTITUT FUER TECHNOLOGIE 

Organization address
address: KAISERSTRASSE 12
city: KARLSRUHE
postcode: 76131
website: www.kit.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 174˙806 €
 EC max contribution 174˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KARLSRUHER INSTITUT FUER TECHNOLOGIE DE (KARLSRUHE) coordinator 174˙806.00

Map

 Project objective

Within recent years, metal halide perovskite solar cells (PSCs) attracted enormous attention in research and industries as a future sustainable technology to harvest solar energy at very low cost. The material has demonstrated outstanding optoelectronic properties as well as the tunability of the perovskite bandgap over a wide range of energies by compositional engineering of the crystal structure. These properties enable Perovskite-Perovskite multijunction solar cells, which can harvest a wide range of the sun spectrum at very high efficiencies. The technology combines a high bandgap with a low bandgap perovskite absorber layer and offers the prospects of becoming a fully printable, low-cost and very high efficient thin-film photovoltaic technology. However, up to date, this technology is limited by the low performance and the instabilities of low bandgap (LBG) PSCs. In this project, this key challenge will be tackled by engineering LBG perovskites, both in the 2D as well as the 3D crystal structures, to reach a stable perovskite material of high optoelectronic quality. The ultimate goal is to develop efficient and stable LBG PSCs which will enable a Perovskite-Perovskite multijunction solar cell with power conversion efficiency (PCE) of >27% and >100 hours of stable power output. This will be a major landmark in the development of the photovoltaic technology and also, this fellowship would be an outstanding opportunity to me to promote my knowledge in the photovoltaic science and technology in an experienced and professional center.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "S-PSK-PSK-MJ-PSC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "S-PSK-PSK-MJ-PSC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TRACE-AD (2019)

Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease

Read More  

Comedy and Politics (2018)

The Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.

Read More  

ROAR (2019)

Investigating the Role of Attention in Reading

Read More