Explore the words cloud of the Cell-Lasers project. It provides you a very rough idea of what is the project "Cell-Lasers" about.
The following table provides information about the project.
Coordinator |
INSTITUT JOZEF STEFAN
Organization address contact info |
Coordinator Country | Slovenia [SI] |
Total cost | 1˙492˙090 € |
EC max contribution | 1˙492˙090 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-05-01 to 2025-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | INSTITUT JOZEF STEFAN | SI (LJUBLJANA) | coordinator | 1˙492˙090.00 |
Recently, micro-sized lasers have been integrated into biological systems including cells and tissues. Currently the most frequently used techniques to study complex processes in live cells employ fluorescent probes. However, fluorescent probes have several disadvantages including photobleaching, sensitivity to environmental factors, potential phototoxicity and broad emission spectrum, which limits their sensitivity, multiplexing ability and imaging capabilities in biological tissues. The transition from detecting laser emission from bio-integrated lasers instead of fluorescence represents a paradigm shift. Due to narrow emission linewidth, high coherence, large intensity and highly nonlinear output from lasers, they open huge opportunities in ultrasensitive sensing, spectral multiplexing and microscopy. The applicant has recently for the first time demonstrated a laser completely embedded inside a live human cell. However, to date it has only been demonstrated that laser light can be generated within the cell, but not how is the laser output coupled to the biophysical and biochemical processes inside cells. The goal of Cell-Lasers is to study these intimate interactions including forces acting within cells, properties of natural cavities in lipid droplets and the intracellular chemical environment. Since the spectral positions of laser lines do not change with propagation through scattering and absorbing media, the cell lasers will enable multiplexed sensing, tracking and localization of cells embedded deep inside tissues. In the long term Cell-Lasers aims to transform the bio-integrated lasers from being a pure scientific curiosity into powerful tool for the study of biophysical and biochemical processes taking place on a single cell level.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CELL-LASERS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CELL-LASERS" are provided by the European Opendata Portal: CORDIS opendata.