Opendata, web and dolomites

STAREX SIGNED

STARs at the EXtreme

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "STAREX" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE GENEVE 

Organization address
address: RUE DU GENERAL DUFOUR 24
city: GENEVE
postcode: 1211
website: www.unige.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 2˙500˙000.00

Map

 Project objective

The first stars in the Universe are extreme objects. Extreme in their composition: they are made of material having been processed only by the Big Bang nucleosynthesis, and having a content in dark matter likely very different from the one of the present-day stars. Extreme in their properties: one of the most important properties is their mass that might reach values as high as even 100 000 solar masses (supermassive black-hole seeds). Their properties may differ from the today massive star populations also by their likely fast axial spins, the processes of mass loss, their magnetic fields, multiplicity. Extreme in their physics: born in over densities made mainly by dark matter, the physics of candidate dark matter particles may have a significant effect on their evolution and produce what has been called dark or frozen stars, i.e. stars sustained by dark-matter particle annihilation. The aim of STAREX is to determine which observable features can be used to constrain the composition (baryonic and dark matter), the properties (masses, rotation, magnetic field, multiplicity) and the physics of the first stars in the Universe. These observables will be collected by present-day and future facilities as, for instance, the JWST, ELT, adLigo, VIRGO, LISA and are linked to ionising fluxes, nucleosynthesis, radiation of both stellar populations and transient events, and gravitational waves. STAREX will explore new physical processes, build and use new numerical tools, provide observables that will account together for a sophisticated description of the physics of individual stars, single or in binary systems, and for the dynamics of the stars in the first stellar clusters. STAREX is at the crossroad of topics such as stellar physics, nucleosynthesis, hydrodynamics, evolution of galaxies, and will potentially engender ground-braking consequences for observational cosmology, astrophysics and even fundamental physics (fluid dynamics, dark matter properties).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STAREX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STAREX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HD-Neu-Screen (2020)

HD-MEA-based Neuronal Assays and Network Analysis for Phenotypic Drug Screenings

Read More  

MaeBAia (2018)

Mechanisms of adverse effects of Beta-Agonists in Asthma

Read More  

Back2theFuture (2020)

Back to the Future: Future expectations and actions in late medieval and early modern Europe, c.1400-c.1830

Read More