Opendata, web and dolomites

DEXIM SIGNED

Deeply Explainable Intelligent Machines

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DEXIM project word cloud

Explore the words cloud of the DEXIM project. It provides you a very rough idea of what is the project "DEXIM" about.

explanations    trust    monitor    supports    easily    robotics    warn    collaborate    market    fail    fashioned    ailment    valuable    unable    artificially    hence    industry    situations    visual    intelligent    notably    deep    position    practical    data    positive    opaque    output    vehicles    frequently    imagery    themselves    continuity    multiple    natural    modalities    mobile    memory    led    put    environment    medical    ultimately    concerning    learning    self    humans    incorporate    explanatory    millions    abnormal    justify    possibility    justifying    driving    explanation    patients    strengthen    prevent    stable    mechanisms    arise    scaffold    hurricane    critical    save    constraints    monitoring    direct    contrast    operate    competitive    language    machine    building    decision    law    adapt    gdpr    lives    trainable    satellite    human    attain    temporal    automatic    maker    point    world    scene    interactions    makers    transparent    adaptive    decisions    wrong    explainable    domain   

Project "DEXIM" data sheet

The following table provides information about the project.

Coordinator
EBERHARD KARLS UNIVERSITAET TUEBINGEN 

Organization address
address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074
website: www.uni-tuebingen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2024-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EBERHARD KARLS UNIVERSITAET TUEBINGEN DE (TUEBINGEN) coordinator 1˙500˙000.00

Map

 Project objective

Explanations are valuable because they scaffold the kind of learning that supports adaptive behaviour, e.g. explanations enable users to adapt themselves to the situations that are about to arise. Explanations allow us to attain a stable environment and have the possibility to control it, e.g. explanations put us in a better position to control the future. Explanations in the medical domain can help patients identify and monitor the abnormal behaviour of their ailment. In the domain of self-driving vehicles they can warn the user of some critical state and collaborate with her to prevent a wrong decision. In the domain of satellite imagery, an explanatory monitoring system justifying the evidence of a future hurricane can save millions of lives. Hence, a learning machine that a user can trust and easily operate need to be fashioned with the ability of explanation. Moreover, according to GDPR, an automatic decision maker is required to be transparent by law.

As decision makers, humans can justify their decisions with natural language and point to the evidence in the visual world which led to their decisions. In contrast, artificially intelligent systems are frequently seen as opaque and are unable to explain their decisions. This is particularly concerning as ultimately such systems fail in building trust with human users.

In this proposal, the goal is to build a fully transparent end-to-end trainable and explainable deep learning approach for visual scene understanding. To achieve this goal, we will make use of the positive interactions between multiple data modalities, incorporate uncertainty and temporal continuity constraints, as well as memory mechanisms. The output of this proposal will have direct consequences for many practical applications, most notably in mobile robotics and intelligent vehicles industry. This project will therefore strengthen the user’s trust in a very competitive market.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEXIM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEXIM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More