Explore the words cloud of the SPATEMP project. It provides you a very rough idea of what is the project "SPATEMP" about.
The following table provides information about the project.
Coordinator |
ERNST STRUNGMANN INSTITUTE GGMBH
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙750˙000 € |
EC max contribution | 1˙750˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-02-01 to 2025-01-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | ERNST STRUNGMANN INSTITUTE GGMBH | DE (FRANKFURT AM MAIN) | coordinator | 1˙750˙000.00 |
During active wakefulness, cortical activity organizes itself into highly coherent patterns of gamma waves (30-80Hz). These waves are believed to be essential for cortical communication and synaptic plasticity. Their impairment is a hallmark of neurological and psychiatric disorders. Yet, it remains heavily debated what gamma waves encode, and what their precise role in information transmission is. I have recently proposed a new theory about gamma in visual cortex, building on the predictive coding theory. The predictive coding theory holds that the brain makes active top-down predictions about its own sensory inputs. By comparing these, it generates bottom-up prediction errors to drive learning and the updating of priors. The standard view in predictive coding theories is that gamma waves carry prediction errors. However, I recently hypothesized the opposite: 1) Gamma waves signal a match between predictions and sensory inputs (i.e. predictability), and 2) Columns that predict each other's visual input engage in long-range gamma-synchronization. To test this hypothesis, it is critical to develop a new method to quantify predictions and prediction errors in the context of natural vision. I will solve this by using recently developed deep-learning networks for prediction. By making multi-areal recordings from visual cortex in marmosets and humans (MEG), I will test if predictability indeed determines gamma waves and their synchronization pattern across space. Because stimulus priors have to be acquired through learning, I will further determine whether gamma waves depend on experience and perceptual learning. In marmosets, I will develop an optogenetics approach to test whether gamma waves drive perceptual learning, and test the prediction that V1 gamma waves depend on top-down feedback. In sum, I expect to provide evidence for a new, unified theory about the role of gamma waves in information transmission and the integration of sensory evidence with predictions.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPATEMP" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SPATEMP" are provided by the European Opendata Portal: CORDIS opendata.