Opendata, web and dolomites

Brillouin4Life SIGNED

Development of advanced optical tools for studying cellular mechanics at high spatial and temporal resolution

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Brillouin4Life project word cloud

Explore the words cloud of the Brillouin4Life project. It provides you a very rough idea of what is the project "Brillouin4Life" about.

destructive    temporal    shape    phototoxicity    illumination    live    elasticity    fellow    time    virtually    difficulties    technologies    3d    biologists    quantify    visco    modalities    organismal    label    quantification    methodological    encoded    living    biology    started    interdisciplinary    group    cellular    understand    measured    resolution    accurately    invasive    components    mechanics    thereby    prohibiting    penetration    obtain    innovative    datasets    plane    interwoven    fashion    visualized    mechanical    elastography    multicellular    overcome    lately    assessing    multiplexed    organisation    optical    imaging    probe    developmental    investigations    advancements    limited    correlative    implementations    brillouin    spatio    emerged    maximize    sciences    contact    improvements    minimizing    tool    tissue    routinely    diffraction    biomechanics    morphogenesis    microscopy    life    free    selective    elastic    genome    compartments    materials    cells    bm    despite    combine    biophysics    ongoing    molecular    interactions    technique    revolutionary    suffer    speed    fluorescence    drawbacks    photodamage    self   

Project "Brillouin4Life" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN MOLECULAR BIOLOGY LABORATORY 

Organization address
address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117
website: http://www.embl.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙999˙289 €
 EC max contribution 1˙999˙289 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY DE (HEIDELBERG) coordinator 1˙999˙289.00

Map

 Project objective

A long-standing aim in the life sciences is to understand development and morphogenesis, i.e. how organismal shape is encoded by the genome and how cellular mechanics are involved in its execution. Lately, investigations have started to focus on the mechanical properties of the involved multicellular compartments, and the interwoven mechanical - molecular interactions at the cellular scale. While molecular components can routinely be visualized with fluorescence microscopy, assessing the mechanical properties of living cells with similar spatio-temporal resolution in a non-invasive fashion has long been an open challenge.

Recently, a new type of optical elastography, namely Brillouin microscopy (BM), has emerged as a non-destructive, label- and contact-free technique which can probe visco-elastic properties of materials with diffraction-limited resolution in 3D. Yet, despite ongoing improvements, virtually all current implementations suffer from very low speed, high phototoxicity, and difficulties in quantification, thus prohibiting meaningful investigations in the life sciences.

In this interdisciplinary proposal, my group will develop unique and innovative optical imaging technologies based on BM to overcome its current drawbacks and to establish it as a revolutionary tool for live tissue and cellular biophysics studies. In particular, we will work towards a highly-multiplexed BM with selective-plane illumination to maximize speed, resolution and depth penetration, while minimizing photodamage (Aim 1). At the same time, we will combine BM with other imaging modalities that will allow us to obtain correlative datasets and to accurately quantify the measured mechanical properties (Aim 2). We will then apply these methodological advancements together with fellow biologists to study the role of elasticity in tissue morphogenesis and self-organisation, thereby contributing to a better understanding of the role of biomechanics in developmental biology (Aim 3).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BRILLOUIN4LIFE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BRILLOUIN4LIFE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More