Opendata, web and dolomites

RNAVirFitness SIGNED

The dark side of evolution: the deleterious mutational landscape of RNA viruses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RNAVirFitness project word cloud

Explore the words cloud of the RNAVirFitness project. It provides you a very rough idea of what is the project "RNAVirFitness" about.

safe    patients    epidemics    postulate    therapeutic    pathogens    host    evolution    suggest    viruses    array    mutation    single    characterizing    overcome    anticipate    notorious    class    mutations    human    strategies    strains    shown    reverse    contribution    environmental    date    pathogen    deleterious    vivo    drivers    perturbation    fitness    sequence    genetic    represented    culture    rare    spanning    tackle    critical    contexts    generation    sequencing    tissue    physical    explore    gap    broad    perturbations    antiviral    harnessed    vitro    diseases    models    linkage    evolutionary    ngs    vaccine    proportion    context    spectrum    metabolic    signatures    techniques    population    cell    mainly    extinction    rna    appreciable    diversity    biology    integrate    times    diverse    dfe    attenuated    unfeasible    validation    dependent    ideal    consequence    understudied    technically    fundamental    rates    multitude    accumulation    viral    rapid    genetics    strategy    anti    sex    beneficial   

Project "RNAVirFitness" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙495˙625 €
 EC max contribution 1˙495˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2025-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 1˙495˙625.00

Map

 Project objective

Mutations are fundamental drivers of evolution. Characterizing how mutations affect fitness is critical across diverse fields: from pathogen biology, to human genetic diseases, and models of population extinction. RNA viruses, notorious for their high mutation rates and rapid generation times, are ideal models for studying the effects of mutations. To date, deleterious mutations (i.e., mutations with a fitness cost) have been understudied as compared to beneficial mutations, mainly since it has been technically unfeasible to sequence each single rare deleterious mutation. Using novel next generation sequencing (NGS) techniques, we and others have recently overcome this gap, and shown that an appreciable proportion of viral genetic diversity is a consequence of a multitude of rare deleterious mutations. Here, we suggest investigating the distribution of fitness effects (DFE) across a diverse array of RNA viruses, spanning representatives of each class of major human pathogens, both in vivo (in patients) and in vitro (in cell culture). Next, we will focus on genetic linkage and context-dependent fitness effects of mutations. We postulate that over- and under-represented sequence contexts may represent signatures of host anti-viral activity. Finally, we will investigate how the DFE changes following an environmental perturbation (physical and metabolic changes, tissue type, and sex of the host). We will explore how the accumulation of deleterious mutations following rapid perturbations may lead to the extinction of the viral population, and how this can be used as a novel strategy to tackle viral epidemics. To this end we will integrate state-of-the-art NGS, population genetics modelling, and reverse genetics validation. Beyond their contribution to evolutionary biology, we anticipate that our results may be harnessed for the design of safe and effective attenuated vaccine strains, and the development of broad-spectrum antiviral therapeutic strategies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RNAVIRFITNESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RNAVIRFITNESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More