Opendata, web and dolomites

CAC-seq. SIGNED

Chemical assisted enrichment of 5-carboxycytosine that also allows for DNA sequencing at single base resolution.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CAC-seq." data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 212˙933.00

Map

 Project objective

5-carboxycytosine (5caC) has been robustly identified in mammalian DNA. It is known that this DNA modification plays a role in epigenetic demethylation processes. If 5caC has other epigenetically relevant functions is so far unknown. Due to its low abundance it is technically challenging to study this modification in biological samples. Identification of specific readers, recognition by the RNA polymerase II elongation complex, the presence in specific genomic loci as well as changing levels during differentiation of mouse embryonic stem cells (mESCs) point towards an important biological function. A chemical tool that would clarify the role of 5caC in mammalian biology is so far missing. Since DNA modifications play a significant role in human diseases, understanding their functions offer new opportunities for novel treatment strategies. Chemical tools have advanced the field enormously in detecting and analysing newly discovered modified bases by rationally designed chemistry for specific labelling of a given modification. Chemical enrichment of DNA fragments enables mapping of the bases at 200-400 base pair resolution and has been used for a genome-wide mapping of several DNA modifications. To obtain single base resolution a separate modification specific sequencing method needs to be applied after enrichment. To avoid a multistep procedure I will develop a chemical enrichment method for 5caC that is directly coupled to single base resolution sequencing. In combination this provides a powerful chemical tool that has far reaching impact for other researchers in the field and finally enables scientific progress on 5caC.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAC-SEQ." project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAC-SEQ." are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More