Opendata, web and dolomites

NANOCRISPR SIGNED

NANODELIVERY OF SPECIFIC GENOME ENGINEERING TOOLS AS A NOVEL THERAPEUTIC APPROACH FOR AGGRESSIVE PROSTATE CANCERS

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NANOCRISPR" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE CASTILLA - LA MANCHA 

Organization address
address: CALLE ALTAGRACIA 50
city: CIUDAD REAL
postcode: 13071
website: www.uclm.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 172˙932 €
 EC max contribution 172˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2021
 Duration (year-month-day) from 2021-01-11   to  2023-01-10

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE CASTILLA - LA MANCHA ES (CIUDAD REAL) coordinator 172˙932.00

Map

 Project objective

Prostate cancer is the second most common diagnosed malignancy and the fifth leading cause of cancer mortality in men. Whilst primary tumours respond well to therapy, tumours in the metastatic setting become inherently resistant to chemotherapy. Thus, more novel and effective therapeutic approaches are highly needed to treat this lethal disease.

The cornerstone treatment for advanced prostate cancer consists of androgen deprivation therapy and docetaxel (DTX). However, both DTX activity and Androgen receptor (AR) signalling are highly interrelated. On the one hand, it has been shown that DTX is able to inhibit Androgen Receptor (AR) signalling and on the other hand, the activation of AR signaling can induce DTX insensitivity. In order to break this dependency of DTX effectiveness on AR signaling and ensure efficient treatment for advanced prostate cancer, we propose the selective inhibition of AR deploying CRISPR/Cas9 technology together with DTX. Both therapeutical approaches will be encapsulated into prostate-specific targeted nanoparticles which will allow the simultaneous delivery of the drug and CRISPR plasmids targeting AR into the tumour site. The designed state-of-art multi-functional nanoparticles will reprogram and sensitise the prostate tumour to DTX in situ, and will also induce a higher accumulation of the treatment in the tumour while healthy tissues will remain less affected. Moreover, the use of CRISPR/Cas9 will precisely engineer the prostate cancer cells to express lower levels of AR, contrasting with current anti-AR treatments, which have multiple off-targets.

This approach represents an innovative targeted therapy for advanced prostate cancer. It will allow the administration of lower doses of chemotherapy with consequently reduced toxicity and the potential for longer tolerated treatment periods, whilst improving efficacy by selectively suppressing the molecular pathways causing cancer survival and resistance to treatment.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOCRISPR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOCRISPR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Comedy and Politics (2018)

The Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More  

INSANE (2020)

Joint Species And Niche Evolution

Read More