Opendata, web and dolomites

AETSOM SIGNED

Engineering a solution to the “resolution gap” problem for probing local optoelectronic properties in low-dimensional materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AETSOM project word cloud

Explore the words cloud of the AETSOM project. It provides you a very rough idea of what is the project "AETSOM" about.

scanning    metal    glass    breakthrough    magnitude    periods    immediately    fiber    insulator    direct    ucnp    strategy    generally    energies    bohr    encountered    light    lengths    vice    quantum    fabricated    versa    illumination    tip    perform    exciton    moire    lattice    spacings    investigation    technological    ucnps    achievable    many    nearly    biomolecular    photons    defect    dimensional    collection    scales    activation    capability    coupling    physics    elucidation    absorb    single    optoelectronic    refer    nanoparticle    resolution    chemistry    microscopy    transfer    emit    length    functionalization    detection    fluorophores    photo    photon    sizes    attained    wavelengths    nir    nm    energy    ultrasensitive    doped    waveguide    digit    near    harvesting    multiple    tapered    diffusion    radii    establishment    attachment    orders    environments    lanthanide    optical    characterization    determined    probe    intended    nano    anticipated    interactions    materials    aetsom    efficiencies    upconverting    volumes    visible    atomic    efficient   

Project "AETSOM" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 269˙998 €
 EC max contribution 269˙998 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2021
 Duration (year-month-day) from 2021-04-01   to  2024-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 269˙998.00
2    TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK US (NEW YORK) partner 0.00

Map

 Project objective

Many of the defining optoelectronic properties in low-dimensional materials – e.g. exciton Bohr radii and diffusion lengths, defect sizes and spacings, and Moire lattice periods – are determined by materials physics and processes that occur at the single-digit nm length scale. Their direct investigation and elucidation – crucial for future applications – therefore requires the ability to probe light-matter interactions at a resolution an order of magnitude better than what is generally achievable with existing nano-optical approaches. Here we propose a strategy for achieving single-nm optical resolution by developing a breakthrough capability which we will refer to as Atomic Energy Transfer Scanning nano-Optical Microscopy (AETSOM). The one-nm optical resolution will be attained by the attachment of a lanthanide-doped upconverting nanoparticle (UCNP) at the end of a near-field scanning probe tip. The intended probe is composed of a tapered metal-insulator-metal waveguide fabricated at the end of a glass fiber, enabling the efficient coupling of far-field light to the near-field and vice-versa through the probe tip, over a wide range of wavelengths. Lanthanide-doped UCNPs absorb multiple photons in the NIR and emit at higher energies in the NIR/visible with efficiencies orders of magnitude higher than those of the best 2-photon fluorophores. The robust attachment of the UCNPs to the probe through specific functionalization of the UCNPs will enable illumination/collection to/from single-digit nm volumes. The establishment of this breakthrough single-digit nano-optical capability will provide the ability to perform photon-based characterization and activation over multiple length scales on nearly any sample and in the real environments encountered in most technological applications. The anticipated results will immediately impact numerous fields, from quantum materials to photo-chemistry to energy harvesting to ultrasensitive biomolecular control and detection.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AETSOM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AETSOM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

MNSWLGM (2019)

An optofluidic platform based on liquid-gradient refractive index microlens for the isolation and quantification of extracellular vesicles

Read More