Explore the words cloud of the ESRS-EMS for CO2RR project. It provides you a very rough idea of what is the project "ESRS-EMS for CO2RR" about.
The following table provides information about the project.
Coordinator |
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 224˙933 € |
EC max contribution | 224˙933 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2021 |
Duration (year-month-day) | from 2021-01-01 to 2022-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE | UK (LONDON) | coordinator | 224˙933.00 |
Wide-spread application of fossil fuels by humankind during a few past decades has resulted in increased concentration of carbon dioxide (CO2) in atmosphere from approximately 270 to more than 400 ppm during the past 200 years. The increased CO2 level in atmosphere causes unprecedented raise of the earth’s temperature and acidification of the oceans. Therefore, there is an urge to reduce the devastating consequences of global warming, as highlighted in the global summit on climate change (Paris Agreement) as well as the European Commission. Replacing the conventional fossil fuels with renewable sources of energy has been recognized as one of the crucial actions in this regard. Accordingly, conversion of CO2 into other carbonaceous fuels may decrease the CO2 concentration in atmosphere, while producing a renewable source of energy. Electrochemical reduction of CO2 provides high environmental compatibility and adaptability with renewable forms of energies like wind and solar. Electrochemical reduction of CO2 to fuels reverses the combustion, facilitating the storage of electricity by CO2 reduction reaction (CO2RR) to form valued hydrocarbons and oxygenates. Despite the recent progresses in catalysts design, the complex mechanism leading to formation of a mixture of 16 different products on various surfaces is not thoroughly understood. New operando spectroscopic techniques are required to illustrate the underneath reaction mechanism through tracing the intermediates species. Accordingly, the objective of this project is to develop an operando technique by coupling surface enhanced Raman spectroscopy (ESRS) with electrochemical mass spectrometry (EMS) for CO2RR mechanistic studies. The obtained insights from this study will determine the mechanism of catalytic activity in CO2RR, leading toward the rational design of new catalysts with improved activity and selectivity toward formation of C2 products which can be directly used as fuel.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ESRS-EMS FOR CO2RR" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "ESRS-EMS FOR CO2RR" are provided by the European Opendata Portal: CORDIS opendata.