Opendata, web and dolomites

FASTKiT SIGNED

Fully Adaptive Simulation Tool for Kinetic Theory

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FASTKiT" data sheet

The following table provides information about the project.

Coordinator
KATHOLIEKE UNIVERSITEIT LEUVEN 

Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000
website: www.kuleuven.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 166˙320 €
 EC max contribution 166˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) coordinator 166˙320.00

Map

 Project objective

Kinetic models are omnipresent in a wide range of scientific and engineering applications. They are derived from the evolution of a particle distribution in position-velocity phase space, and appear, for instance, in the modeling of fusion energy reactors and atmospheric reentry of spacecraft, where classical fluid equations are inaccurate. Further technological progress of these applications requires significant advances in modeling and simulation of kinetic models. The underlying kinetic equations pose severe simulation challenges, due to their inherent high-dimensionality and the presence of a wide range of time scales. The increased dimensionality in velocity directions can be addressed by an extended set of fluid quantities via moment models or the maximum entropy method. To deal with the stiffness of the equations, asymptotic-preserving time discretization methods need to be used. Since both the stiffness and the accuracy of a kinetic model depend on space and time, the design of numerical methods incorporating fully integrated space-time adaptivity is crucial to allow these methods to be efficiently used in real-world applications.

In this action, the applicant will integrate his expertise on moment models with the experience on projective integration schemes available at the host institution, and extend their applicability towards a wide range of kinetic models hereby achieving the following objectives: - Develop fully space-time adaptive numerical scheme for kinetic models - Implement software for space-time adaptive solution of kinetic models - Compute numerical solutions for real-world applications

The results of FASTKiT will constitute a major step forward in the adaptive simulation of kinetic models. FASTKiT will contribute to the development of technologies for next generation reactors and space exploration efforts, in line with Horizon 2020, while the applicant will benefit from an innovative environment to receive training and transferable skills.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FASTKIT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FASTKIT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More