Coordinatore | UNIVERSITEIT UTRECHT
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Netherlands [NL] |
Totale costo | 1˙498˙000 € |
EC contributo | 1˙498˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-StG_20101014 |
Funding Scheme | ERC-SG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-01-01 - 2016-12-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITEIT UTRECHT
Organization address
address: Heidelberglaan 8 contact info |
NL (UTRECHT) | hostInstitution | 1˙498˙000.00 |
2 |
UNIVERSITEIT UTRECHT
Organization address
address: Heidelberglaan 8 contact info |
NL (UTRECHT) | hostInstitution | 1˙498˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Phosphorus (P) is a key and often limiting nutrient for phytoplankton in the ocean. A strong positive feedback exists between marine P availability, primary production and ocean anoxia: increased production leads to ocean anoxia, which, in turn, decreases the burial efficiency of P in sediments and therefore increases the availability of P and production in the ocean. This feedback likely plays an important role in the present-day expansion of low-oxygen waters (“dead zones”) in coastal systems worldwide. Moreover, it contributed to the development of global scale anoxia in ancient oceans. Critically, however, the responsible mechanisms for the changes in P burial in anoxic sediments are poorly understood because of the lack of chemical tools to directly characterize sediment P. I propose to develop new methods to quantify and reconstruct P dynamics in low-oxygen marine systems and the link with carbon cycling in Earth’s present and past. These methods are based on the novel application of state-of-the-art geochemical analysis techniques to determine the burial forms of mineral-P within their spatial context in modern sediments. The new analysis techniques include nano-scale secondary ion mass spectrometry (nanoSIMS), synchotron-based scanning transmission X-ray microscopy (STXM) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). I will use the knowledge obtained for modern sediments to interpret sediment records of P for periods of rapid and extreme climate change in Earth’s history. Using various biogeochemical models developed in my research group, I will elucidate and quantify the role of variations in the marine P cycle in the development of low-oxygen conditions and climate change. This information is crucial for our ability to predict the consequences of anthropogenically-enhanced inputs of nutrients to the oceans combined with global warming.'