AAS

Approximate algebraic structure and applications

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙000˙000 €
 EC contributo 1˙000˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) beneficiary 365˙282.97
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 634˙717.06
3    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Prof.
Nome: Ben
Cognome: Green
Email: send email
Telefono: +441865 273525
Fax: +441865 273583

UK (OXFORD) hostInstitution 634˙717.06

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mathematical    theory    group    approximate   

 Obiettivo del progetto (Objective)

'This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.

We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BIGBAYES (2014)

"Rich, Structured and Efficient Learning of Big Bayesian Models"

Read More  

SEALINKS (2008)

Bridging continents across the sea: Multi-disciplinary perspectives on the emergence of long-distance maritime contacts in prehistory

Read More  

NETWORKS (2011)

Economic Allocations in Social Networks: Evidence and Theory

Read More