Coordinatore | IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙497˙620 € |
EC contributo | 1˙497˙620 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-StG_20101014 |
Funding Scheme | ERC-SG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-01-01 - 2016-12-31 |
# | ||||
---|---|---|---|---|
1 |
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD contact info |
UK (LONDON) | hostInstitution | 1˙497˙620.00 |
2 |
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD contact info |
UK (LONDON) | hostInstitution | 1˙497˙620.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'A novel analytical platform is proposed to detect and identify DNA at low concentration in a high throughput manner at the single molecule level.
The potential impact of this research is significant and will result in single molecule detection becoming a mainstream tool within the medical diagnostics and analytical communities. 'Rare event' detection plays an important role in the early detection of illnesses and disease (e.g. cancers and bacterial infections). Using analytical technologies that exist today it is almost impossible to detect a single DNA strand within a standard blood sample (of a few mLs) within a reasonable time frame. The technology that will be developed within the current project will allow for such detection to be performed both rapidly and efficiently. If successful, the core technology described will become a mainstream analytical tool that will be of significant benefit within biomedical laboratories, hospitals, and clinics around the world.
Specifically, chemical and semiconductor processing methods will be developed to define a novel approach to high throughput DNA quantification at the single molecule level. This innovative technology will function by introducing biological samples in micro- and nanofluidic chips and using electric fields to direct DNA strands through nanometre-sized pores on a membrane. Detection and sizing of the individual DNA strands (labelled with fluorophores) is then accomplished using confocal fluorescence spectroscopy.
This new approach to high-throughput, single molecule DNA analysis harnesses the strengths of both analytical spectroscopy and silicon fabrication technology to allow the creation of hybrid devices in which molecular quantification can be realized. I expect this work to have major impact and open up new possibilities for nano-analytical tools in the chemical and biological sciences.'