Coordinatore | UNIVERSITY COLLEGE LONDON
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙875˙550 € |
EC contributo | 1˙875˙550 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-StG_20101014 |
Funding Scheme | ERC-SG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-12-01 - 2016-11-30 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Organization address
address: University Offices, Wellington Square contact info |
UK (OXFORD) | beneficiary | 0.00 |
2 |
UNIVERSITY COLLEGE LONDON
Organization address
address: GOWER STREET contact info |
UK (LONDON) | hostInstitution | 1˙875˙550.00 |
3 |
UNIVERSITY COLLEGE LONDON
Organization address
address: GOWER STREET contact info |
UK (LONDON) | hostInstitution | 1˙875˙550.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The property of spin has been harnessed in an array of revolutionary technologies, from nuclear spins in magnetic resonance imaging to spintronics in magnetic recording media. Nature at its deepest level is quantum mechanical and spins are capable of demonstrating superposition and entanglement, yet such coherent properties have not yet been fully exploited. The exquisite control over materials fabrication and spin control techniques has reached a maturity where spintronics can go beyond purely classical effects and begin to fully exploit these quantum properties. Potential applications range from quantum information processors, including the transmission of quantum information via itinerant electron spins, single microwave photon storage within spin ensembles, and a new generation of sensors exploiting entanglement to yield fundamentally enhanced precision.
The aim of ASCENT is to develop materials and devices in which electron and nuclear spins exhibit long-lived coherent quantum behaviour and interactions which can be harnessed for technological purposes. Specifically, ASCENT will exploit in range of condensed matter systems from molecular materials to silicon-based structures, the possibility of transiently generating and removing electron spins in the vicinity of nuclear spins. The project represents a new and promising direction for the development of coherent interactions between spins in materials, and one which builds upon foundations I have established in my earlier work, often supported by preliminary investigations. Strong interactions with theory throughout this project will provide insights to refine and improve the experiments. In addition to direct applications in quantum technologies, the insights and methodology gained will be fed back into the wider field of spin resonance, including dynamic nuclear polarisation, structural biology and medical imaging.'
TARGET MV: Proof of concept study to commercialise a microvesicle-based drug delivery system
Read MoreThe demography of skills and beliefs in Europe with a focus on cohort change
Read More"Origins, proliferation and pathogenesis of L-form (cell wall deficient) bacteria"
Read More