ATMINDDR

ATMINistrating ATM signalling: exploring the significance of ATM regulation by ATMIN

 Coordinatore THE FRANCIS CRICK INSTITUTE LIMITED 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙499˙880 €
 EC contributo 1˙499˙880 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101109
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-02-01   -   2017-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CANCER RESEARCH UK

 Organization address address: ST JOHN STREET 407 ANGEL BUILDING
city: LONDON
postcode: EC1V 4AD

contact info
Titolo: Ms.
Nome: Holly
Cognome: Elphinstone
Email: send email
Telefono: +44 20 7269 3524
Fax: +44 207 269 3585

UK (LONDON) beneficiary 0.00
2    THE FRANCIS CRICK INSTITUTE LIMITED

 Organization address address: 215 Euston Road, Gibbs Building
city: LONDON
postcode: NW1 2BE

contact info
Titolo: Dr.
Nome: Axel
Cognome: Behrens
Email: send email
Telefono: +44 20 7269 3439
Fax: +44 20 7269 3585

UK (LONDON) hostInstitution 1˙499˙880.60
3    THE FRANCIS CRICK INSTITUTE LIMITED

 Organization address address: 215 Euston Road, Gibbs Building
city: LONDON
postcode: NW1 2BE

contact info
Titolo: Ms.
Nome: Heather Joanne
Cognome: Woods
Email: send email
Telefono: 442076000000

UK (LONDON) hostInstitution 1˙499˙880.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

molecular    cell    stress    dna    csr    cells    activation    atmin    protein    atm    damage    hypotonic    chromatin    mutant    dsbs    signaling    independent    nbs   

 Obiettivo del progetto (Objective)

'ATM is the protein kinase that is mutated in the hereditary autosomal recessive disease ataxia telangiectasia (A-T). A-T patients display immune deficiencies, cancer predisposition and radiosensitivity. The molecular role of ATM is to respond to DNA damage by phosphorylating its substrates, thereby promoting repair of damage or arresting the cell cycle. Following the induction of double-strand breaks (DSBs), the NBS1 protein is required for activation of ATM. But ATM can also be activated in the absence of DNA damage. Treatment of cultured cells with hypotonic stress leads to the activation of ATM, presumably due to changes in chromatin structure. We have recently described a second ATM cofactor, ATMIN (ATM INteractor). ATMIN is dispensable for DSBs-induced ATM signalling, but ATM activation following hypotonic stress is mediated by ATMIN. While the biological role of ATM activation by DSBs and NBS1 is well established, the significance, if any, of ATM activation by ATMIN and changes in chromatin was up to now completely enigmatic. ATM is required for class switch recombination (CSR) and the suppression of translocations in B cells. In order to determine whether ATMIN is required for any of the physiological functions of ATM, we generated a conditional knock-out mouse model for ATMIN. ATM signaling was dramatically reduced following osmotic stress in ATMIN-mutant B cells. ATMIN deficiency led to impaired CSR, and consequently ATMIN-mutant mice developed B cell lymphomas. Thus ablation of ATMIN resulted in a severe defect in ATM function. Our data strongly argue for the existence of a second NBS1-independent mode of ATM activation that is physiologically relevant. While a large amount of scientific effort has gone into characterising ATM signaling triggered by DSBs, essentially nothing is known about NBS1-independent ATM signaling. The experiments outlined in this proposal have the aim to identify and understand the molecular pathway of ATMIN-dependent ATM signaling.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

QUERG (2009)

Quantum entanglement and the renormalization group

Read More  

GOLNY (2014)

"German Operetta in London and New York, 1907–1939: Cultural Transfer and Transformation"

Read More  

XCHEM (2012)

XUV/X-ray lasers for ultrafast electronic control in chemistry

Read More