LEC&LIP2INVADE

"The interactions of the Pseudomonas aeruginosa lectins LecA and LecB with glycosphingolipids result in membrane invagination, signaling and cellular uptake of the bacterium"

 Coordinatore ALBERT-LUDWIGS-UNIVERSITAET FREIBURG 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙436˙400 €
 EC contributo 1˙436˙400 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101109
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-12-01   -   2016-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ALBERT-LUDWIGS-UNIVERSITAET FREIBURG

 Organization address address: FAHNENBERGPLATZ
city: FREIBURG
postcode: 79085

contact info
Titolo: Dr.
Nome: Winfried
Cognome: Römer
Email: send email
Telefono: 4976120000000
Fax: 4976120000000

DE (FREIBURG) hostInstitution 1˙436˙400.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

   cells    animal    membrane    invasion    suspending    host    bacterial    pathogenesis    bacterium    plasma    pore    aeruginosa   

 Obiettivo del progetto (Objective)

'Pseudomonas aeruginosa has emerged as a major opportunistic pathogen during the past century. The invasion of host cells plays a fundamental role in the pathogenesis of this bacterium. As clinically important antibiotic resistance of P. aeruginosa continues to increase, the identification of host as well as microbial factors essential for P. aeruginosa uptake may lead to new drug targets. Our highly ambitious and interdisciplinary research project at the interface of biology, chemistry and physics aims at describing the molecular mechanism of the internalization of P. aeruginosa in non-phagocytic cells. Based on novel concepts that we have established for some bacterial toxins and animal viruses, we hypothesize that specific interactions of the P. aeruginosa lectins LecA and LecB with distinct glycosphingolipids exposed at the host cell surface lead to formation of plasma membrane invaginations, activation and recruitment of signaling molecules, cytoskeleton remodeling and cellular uptake of the bacterium. In order to acquire highly complementary results and to ensure the maximal outcome, we will perform our studies on diverse animal cells and various membrane model systems in combination with super resolution imaging techniques, biochemical and screening approaches. For the in vitro reconstitution of bacterial invasion, we will develop a unique platform for membrane nanoscopy based on planar pore-suspending membrane systems of different complexity (e.g. pore-suspending plasma membrane sheets and synthetic lipid bilayers). We expect to be able to identify key factors of bacterial uptake and small molecule inhibitors towards them in order to develop new therapies against the pathogenesis of P. aeruginosa infections.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ISLETMESENCHYME (2013)

ß-cell Dysfunction in Diabetes: Elucidating the Role of Islet-Associated Mesenchymal Cells

Read More  

GXE-MOLMECH (2012)

Gene x environment interactions in affective disorders - elucidating molecular mechanisms

Read More  

FUTUREGENES (2010)

Gene transfer techniques in the treatment of cardiovascular diseases and malignant glioma

Read More