DE-CO2

Quantifying CO2 emissions from tropical deforestation to ‘close’ the global carbon budget

 Coordinatore STICHTING VU-VUMC 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-11-01   -   2016-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    VERENIGING VOOR CHRISTELIJK HOGER ONDERWIJS WETENSCHAPPELIJK ONDERZOEK EN PATIENTENZORG

 Organization address address: De Boelelaan 1105
city: AMSTERDAM
postcode: 1081 HV

contact info
Nome: Elma
Cognome: Brasser
Email: send email
Telefono: 31205987250
Fax: +31 20 598 9950

NL (AMSTERDAM) beneficiary 0.00
2    STICHTING VU-VUMC

 Organization address address: DE BOELELAAN 1105
city: AMSTERDAM
postcode: 1081 HV

contact info
Titolo: Dr.
Nome: Guido
Cognome: Van Der Werf
Email: send email
Telefono: 31205985687
Fax: 31206462457

NL (AMSTERDAM) hostInstitution 1˙500˙000.00
3    STICHTING VU-VUMC

 Organization address address: DE BOELELAAN 1105
city: AMSTERDAM
postcode: 1081 HV

contact info
Titolo: Dr.
Nome: Yvonne
Cognome: Kops
Email: send email
Telefono: +31 20 5987304

NL (AMSTERDAM) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

emitted    burning    deforestation    concentrations    constrained    fire    regions    co    satellite    combining    land    oceans    strength    anthropogenic    quantify    atmospheric    emissions    fossil    fuel    sink   

 Obiettivo del progetto (Objective)

'The land and oceans have mitigated climate change by taking up about half of the anthropogenic CO2 emitted since the industrial revolution. However, these ‘sinks’ are predicted to lose their efficiency. Globally, the combined sink strength of the land and ocean can be calculated indirectly as the difference between anthropogenic emissions – from fossil fuel burning and deforestation – and the atmospheric CO2 increase. However, large uncertainty in the deforestation term masks out potential changes in sink strength contained in the better-constrained fossil fuel and atmospheric terms. This creates the need for a new accurate approach to quantify emissions from deforestation and its variability over the past decades.

I propose to quantify deforestation emissions from the novel fire perspective. A substantial share of deforestation emissions stems from burning vegetation, and this focus enables validation of emissions by comparing atmospheric enhancements of fire-emitted carbon monoxide (CO) with satellite-derived concentrations of CO. The proposed multidisciplinary work will follow three steps: 1) quantify net emissions from fires and decomposition in deforestation and degradation regions, combining satellite data with biogeochemical modelling, 2) validate these emissions by combining newly measured CO:CO2 ratios and the isotopic signature of CO2 downwind of deforestation regions, atmospheric chemistry transport modelling, and satellite-derived CO concentrations, and 3) use relations between fire emissions and visibility reported at airports as a novel way to extend the new deforestation emissions estimates back in time before high-quality satellite observations were available. The new approach will lead to the first constrained, monthly resolved estimate of deforestation emissions. Applying the global CO2 mass balance equation will then provide a better quantitative understanding of the (changing) sink capacity of the Earth's oceans and land surface.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TRICEPS (2009)

"Time-resolved Ring-Cavity-Enhanced Polarization Spectroscopy: Breakthroughs in measurements of a) Atomic Parity Violation, b) Protein conformation and biosensing and c) surface and thin film dynamics"

Read More  

VORT3DEULER (2014)

"3D Euler, Vortex Dynamics and PDE"

Read More  

PROKRNA (2011)

Prokaryotic RNomics: Unravelling the RNA-mediated regulatory layers

Read More