GQEMS

Graphene Quantum Electromechanical Systems

 Coordinatore RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙797˙200 €
 EC contributo 1˙797˙200 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

 Organization address address: Templergraben 55
city: AACHEN
postcode: 52062

contact info
Titolo: Prof.
Nome: Christoph
Cognome: Stampfer
Email: send email
Telefono: +49 241 80 27094
Fax: +49 241 80 22306

DE (AACHEN) hostInstitution 1˙797˙200.00
2    RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

 Organization address address: Templergraben 55
city: AACHEN
postcode: 52062

contact info
Titolo: Prof.
Nome: Ernst
Cognome: Schmachtenberg
Email: send email
Telefono: +49 241 80 90 490

DE (AACHEN) hostInstitution 1˙797˙200.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

material    quantum    electromechanical    mechanical    strain    microsystem    electronic    graphene    physics   

 Obiettivo del progetto (Objective)

'The aim of this project is to develop a new class of mechanically tunable quantum devices based on graphene. Adopting an innovative and interdisciplinary approach grounded on both engineering-based microsystem technology and low-temperature solid-state physics, we aim at gaining control over the mechanical and electromechanical properties of graphene nano-membranes and suspended graphene nanostructures, in the low and high strain regime. The main motivation for going in this direction is the expectation that being able to access both the electronic and the mechanical degrees of freedom of graphene will allow to explore new regimes of quantum physics, and lead to potentially important technological applications. Graphene is in fact a unique platform for the development of a new generation of quantum electromechanical systems, not only because of its high carrier mobility, high elasticity and unrivaled material strength, but also because its electronic properties depend sensitively on local strain and mechanical deformations, allowing to envision revolutionary device concepts. This is a timely and highly explorative high-gain/high-risk research project. Its successful accomplishment will set the basis of a novel graphene-based microsystem technology. The project is expected to have an important and far-reaching impact in the fields of nanosystems and graphene physics, not only in terms of potential applications, but also giving an important contribution to the investigation of the fundamental properties of this unique material.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DELCANCER (2012)

The role of loss-of-heterozygosity in cancer development and progression

Read More  

DIGT (2012)

"Diffeomorphism Invariant Gauge Theories, Asymptotic Safety and Geometry"

Read More  

GAME-DYNAMICS (2010)

Game Theory: Dynamic Approaches

Read More