ECOGAL

Star Formation and the Galactic Ecology

 Coordinatore THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙210˙523 €
 EC contributo 2˙210˙523 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-05-01   -   2017-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS

 Organization address address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS FIFE
postcode: KY16 9AJ

contact info
Titolo: Ms.
Nome: Trish
Cognome: Starrs
Email: send email
Telefono: +44 1334 467286
Fax: +44 1334 462217

UK (ST ANDREWS FIFE) hostInstitution 2˙210˙523.00
2    THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS

 Organization address address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS FIFE
postcode: KY16 9AJ

contact info
Titolo: Prof.
Nome: Ian
Cognome: Bonnell
Email: send email
Telefono: +44 1334 463140
Fax: +44 1334 462217

UK (ST ANDREWS FIFE) hostInstitution 2˙210˙523.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

or    local    we    form    feedback    theory    yet    stars    consistent    galaxy    flows    stellar    follow    gas    galaxies    self    clouds    cloud    star    galactic    simulations    rates    molecular    scales    models   

 Obiettivo del progetto (Objective)

'We will construct the first self-consistent models of star formation that follow the galactic scale flows where molecular clouds form yet still resolve the star formation and feedback events down to sub-parsec scales. By following the full galactic ecology, the life cycle of gas from the interstellar medium into stars and their radiative and kinematic output back into the galaxy, we will develop a comprehensive theory of star formation. The link between the large-scale dynamics of the galaxy and the small-scale star formation provides the ground-breaking nature of this proposal. Star formation produces a wide range of outcomes in nearby molecular clouds yet on large scales yields star formation rates that are strongly correlated to galactic-scale gas densities. These observed properties of star forming galaxies have inspired a plethora of theoretical ideas, but until now there has been no means of testing these analytical theories. We will use galactic-disc simulations to determine how molecular clouds form through self-gravity, spiral shocks and/or cloud-cloud collisions. We will use these self-consistent models of molecular clouds to follow the local gravitational collapse to form individual stars and stellar clusters. We will include ionisation, stellar winds and supernovae into the ISM to study how feedback can support or destroy molecular clouds, as well as triggering successive generations of young stars. We will also conduct Galactic bulge scale simulations to model how gas flows into, and star formation occurs in, the Galactic centre. The primary goals of this proposal are to understand what determines the local and global rates, efficiencies and products of star formation in galaxies, and to develop a complete theory of star formation that can be applied to galaxy formation and cosmology.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PETAL (2012)

Polarization condEnsation for Telecom AppLications

Read More  

DARKSIDE (2013)

Harnessing the Dark Side of Protein Folding: Manipulating Aggregation for Recombinant Protein Production

Read More  

CCICO (2012)

Coupled and Competing Instabilities in Complex Oxides

Read More