Opendata, web and dolomites

HYDROTRONICS SIGNED

Hydrodynamic electronics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HYDROTRONICS project word cloud

Explore the words cloud of the HYDROTRONICS project. It provides you a very rough idea of what is the project "HYDROTRONICS" about.

storage    dominated    groups    environment    progress    hydrodynamic    combining    edge    area    routine    geometry    tuned    computational    cutting    paths    electronics    fertile    local    hydrodynamics    macroscopic    microscopic    emergence    laws    charge    framework    manufacturing    software    samples    fine    electrons    describe    clean    dimensional    exposing    turbulent    phenomena    transport    parts    experimental    physics    practitioners    course    accessible    biggest    interacting    ultra    obey    explosion    electron    settings    perspective    materials    nanoelectronics    technological    flourish    superballistic    easily    modern    fabrication    conversion    advances    pure    energy    yield    hydrotronics    uncovered    material    resolve    synergy    graphene    electronic    last    theoretical    network    rapid    led    closer    physical    collisions    stage    manifests    technologies    itself    ideas    immense    electric    powerful    integration   

Project "HYDROTRONICS" data sheet

The following table provides information about the project.

Coordinator
KARLSRUHER INSTITUT FUER TECHNOLOGIE 

Organization address
address: KAISERSTRASSE 12
city: KARLSRUHE
postcode: 76131
website: www.kit.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 524˙400 €
 EC max contribution 506˙000 € (96%)
 Programme 1. H2020-EU.1.3.3. (Stimulating innovation by means of cross-fertilisation of knowledge)
 Code Call H2020-MSCA-RISE-2019
 Funding Scheme MSCA-RISE
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2023-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KARLSRUHER INSTITUT FUER TECHNOLOGIE DE (KARLSRUHE) coordinator 110˙400.00
2    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) participant 105˙800.00
3    STICHTING KATHOLIEKE UNIVERSITEIT NL (NIJMEGEN) participant 96˙600.00
4    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) participant 96˙600.00
5    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) participant 92˙000.00
6    WOLFRAM RESEARCH EUROPE LIMITED UK (LONG HANBOROUGH) participant 4˙600.00
7    LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COLLEGE US (BATON ROUGE) partner 0.00
8    UNIVERSIDAD DE CHILE CL (SANTIAGO) partner 0.00

Map

 Project objective

Advances in fabrication of ultra-pure low-dimensional materials have led in recent years to the emergence of a new area of research -- hydrodynamic electronics. Modern technologies allow for routine manufacturing of ultra-clean samples where observable physical properties are dominated by electron-electron collisions. Electrons in such systems obey the laws of hydrodynamics, which manifests itself in non-local, superballistic, and turbulent transport of energy and electric charge. Following the immense success of graphene research, many novel two-dimensional materials are currently being investigated aiming at potential applications in nanoelectronics, as well as energy conversion and storage. Last years have seen an explosion of interest, both experimental and theoretical, in the hydrodynamic effects in interacting electron systems in ultra-pure materials. The principle aims of HYDROTRONICS are (i) to build a framework to describe hydrodynamic charge and energy transport fine-tuned to the material properties and sample geometry, and (ii) to investigate the physics of novel materials that can be uncovered by transport measurements. Combining the microscopic and macroscopic methods to interacting electronic systems will allow for a unique perspective and yield a powerful approach to transport phenomena that can be easily adapted to new materials and experimental settings, as they become accessible in the course of rapid technological progress. Strong collaboration between the groups involved in the project and its overall synergy will allow novel ideas to flourish, promoting a fertile environment in which early-stage researchers can develop their own paths and resolve the biggest issues in the field. Another important goal is a closer integration between the experimental, theoretical, and computational (software development) parts of the network, which will be an important element exposing practitioners in each area to cutting edge progress in the others.

 Publications

year authors and title journal last update
List of publications.
2019 Egor I. Kiselev, Jörg Schmalian
Lévy Flights and Hydrodynamic Superdiffusion on the Dirac Cone of Graphene
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.123.195302
Physical Review Letters 123/19 2020-02-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYDROTRONICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYDROTRONICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.3.)

TREND (2019)

Transition with Resilience for Evolutionary Development

Read More  

ATLANTIC (2019)

Advanced theoretical network for modeling light matter interactIon

Read More  

RADON (2020)

Irradiation driven nanofabrication: computational modelling versus experiment

Read More