CU-ANGIO

Prostate cancer localization by contrast-ultrasound angiogenesis imaging

 Coordinatore TECHNISCHE UNIVERSITEIT EINDHOVEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙430˙955 €
 EC contributo 1˙430˙955 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-06-01   -   2017-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT EINDHOVEN

 Organization address address: DEN DOLECH 2
city: EINDHOVEN
postcode: 5612 AZ

contact info
Titolo: Dr.
Nome: Massimo
Cognome: Mischi
Email: send email
Telefono: 31402475720
Fax: 31402466508

NL (EINDHOVEN) hostInstitution 1˙430˙955.00
2    TECHNISCHE UNIVERSITEIT EINDHOVEN

 Organization address address: DEN DOLECH 2
city: EINDHOVEN
postcode: 5612 AZ

contact info
Titolo: Mr.
Nome: Alfons W.J.
Cognome: Bruekers
Email: send email
Telefono: +31 40 247 24 74
Fax: +31 40 244 83 75

NL (EINDHOVEN) hostInstitution 1˙430˙955.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

angiogenesis    dispersion    causes    detection    localization    noninvasive    contrast    cancer    ultrasound    successful    prostate    microvascular    bolus    treatment    local    imaging    tracer    focal    moreover    diagnostics    precise    perfusion   

 Obiettivo del progetto (Objective)

'Prostate cancer causes over 1/4 of new cancer cases and 1/10 of cancer deaths in western males. Efficient methods for early treatment are available. Many lives could therefore be saved by early cancer detection, but this is not viable due to the inadequacy of the available noninvasive diagnostics. Systematic biopsy is the only reliable detection technique, but it is hampered by high costs and causes serious discomfort and health risks because of its invasiveness. Moreover, precise cancer localization is not possible, impeding the use of available focal treatments. This research will push the frontiers of prostate cancer diagnostics by a revolutionary method for localization of cancer angiogenesis (microvascular growth). Different from all methods for angiogenesis imaging, invariably based on the assessment of blood perfusion, I aim at quantifying the local dispersion dynamics of an intravascular tracer. Dispersion is the spreading process of the tracer within the vasculature, which I firmly believe to correlate much better than perfusion with microvascular architectures and, therefore, with cancer angiogenesis. The assessment of local dispersion is challenging and will be pursued through an intravenous injection of an ultrasound contrast bolus and novel spatiotemporal analysis of the bolus passage through the prostate circulation, measured by three-dimensional ultrasound imaging. If successful, the proposed method will represent a breakthrough for early noninvasive and accurate prostate cancer localization, precise focal treatment, and treatment follow-up, with strong potential for use for other types of cancers, such as breast cancer. Moreover, this method will facilitate further groundbreaking research in the therapeutic control of angiogenesis in several pathologies. This exciting research builds on my multidisciplinary expertise in ultrasound contrast dilution methods and on consistent and successful collaborations with leading clinical and industrial partners.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

RESOCEA (2011)

Regime and Society in Eastern Europe (1956 - 1989). From Extended Reproduction to Social and Political Change

Read More  

MOPIT (2012)

Molecular photoacoustic imaging of stem-cell driven tissue regeneration

Read More  

GLYCOTARGET (2014)

Exploring the targeted delivery of biopharmaceuticals enabled by glycosylation control

Read More