MICE

Microflow in Complex Environments

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙583˙887 €
 EC contributo 1˙583˙887 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 1˙583˙887.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Prof.
Nome: Julia Mary
Cognome: Yeomans
Email: send email
Telefono: 441865000000
Fax: 441865000000

UK (OXFORD) hostInstitution 1˙583˙887.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fluids    close    patterned    experimental    surfaces    reynolds    fluid    surface    simple    hydrodynamics    scales    flow    active    interface    confinement    concentrate    substrates    micropatterned   

 Obiettivo del progetto (Objective)

'We will study the way in which the hydrodynamics of simple, complex and active fluids is affected by their environment, in particular by patterned surfaces and by confinement. We shall concentrate on micron and nanometric length scales where surfaces are often key in controlling fluid behaviour. The work is driven by current rapid and exciting advances in fabricating micropatterned substrates and by new experimental techniques probing the flow properties of fluids at these scales. Our work will be primarily computational and theoretical, but with an experimental component within Oxford, and with close experimental links to several groups internationally.

The systems we will concentrate on are:

1. simple fluids at micropatterned substrates: We aim to understand interface pinning, particularly on anisotropic surfaces, and superhydrophobic hydrodynamics. The knowledge will be used to help design devices, such as displays and condensers that exploit fluid-surface interactions at the mesoscale.

2. complex fluids in confinement and at patterned substrates: We shall concentrate on the f-d virus as a highly monodisperse system of colloidal rods which shows lyotropic liquid crystalline ordering. A close collaboration between experiment and simulation will investigate the interplay between elasticity, surface anchoring, flow, topological defects and interface instabilities.

3. active fluids at surfaces: Our aim is to understand low Reynolds number swimming in the vicinity of rough surfaces and in confined systems such as microchannels and fluid drops. Microswimmers provide an experimentally and theoretically accessible example of non-equilibrium statistical physics and have a range of striking behaviours, including clustering, low Reynolds number turbulence and anomalous flow field statistics, that remain exciting challenges.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TOFU (2013)

Toward a new generation of multi-dimensional stellar evolution models: the TOol of the FUture

Read More  

CEMOMAGNETO (2014)

The Cellular and Molecular Basis of Magnetoreception

Read More  

EVOLNA (2011)

Evolution of LNA Aptamers

Read More