EPAXIALMYF5KO

Single-enhancer knockout analysis of Myf5 function in the developing mouse embryo

 Coordinatore AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS 

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Mr.
Nome: Alberto
Cognome: Sereno Alvarez
Email: send email
Telefono: 34915668852
Fax: 34915668913

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Mr.
Nome: Alberto
Cognome: Sereno Alvarez
Email: send email
Telefono: 34915668852
Fax: 34915668913

ES (MADRID) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

skeletal    fundamental    dorsomedial    lip    expression    activation    first    mrfs    musculature    myod    function    myogenesis    myogenic    strain    precursor    regulatory    ko    myf    phenotype    cells    cell   

 Obiettivo del progetto (Objective)

'During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is orchestrated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. Myf5, the first of these MRFs to be activated in the mouse embryo, is first expressed in the dorsomedial lip of the dermomyotome. In the absence of Myf5, the myogenic process is delayed for 48h. The phenotype is rescued by the activation of another member of the MRF family, MyoD. In the double Myf5/MyoD KO animals there is no rescue of the phenotype and they lack all skeletal musculature. To further investigate the function of Myf5, we have generated a new inducible KO strain in which the enhancer element that drives the first wave of Myf5 expression in the dermomyotomal lip can be deleted from the genome. Preliminary data show that this domain of expression has been specifically targeted. We plan to fully characterise the new KO strain and to study the effects of eliminating Myf5 function only from the dorsomedial lip. Furthermore, we will cross it with the MyoD KO strain in order to block myogenesis only this precursor cell population. This should result in a better understanding of the function of Myf5 and of the contribution of dorsomedial lip derivatives to adult skeletal musculature.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NANOPOLY (2009)

Hybrid Models for Tailoring Nano-Architectures of polymers

Read More  

ATHEROCHEMOKINE (2010)

Investigation of the role of CXCL5/CXCR1 pathway in atherosclerosis

Read More  

RN07CZECHREP (2007)

Researchers Night 2007 in the Czech Republic

Read More