AKMI

Advanced Kernel-Methods for Medical Imaging

 Coordinatore KOBENHAVNS UNIVERSITET 

 Organization address postcode: 1017

contact info
Titolo: Dr.
Nome: Martin
Cognome: Zachariasen
Email: send email
Telefono: +45 35321357

 Nazionalità Coordinatore Denmark [DK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-05-01   -   2016-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1 KOBENHAVNS UNIVERSITET DK coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

medical    kernel    accuracy    similarity    computer    employ    visual    learning    hierarchical    images    imaging    image    machine   

 Obiettivo del progetto (Objective)

'The goal of this project is to develop kernel-based machine learning methods for image classification that employ similarity measures comparing images in a hierarchical fashion - as humans do, but with the accuracy of a computer. These methods shall allow to solve challenging medical imaging problems, in particular they will be applied to the diagnosis of osteoarthritis (OA) and breast cancer, which are ranked among the most burdening diseases.

Looking at the visual cortex, it becomes obvious that the human visual system uses `deep' structure consisting of multiple levels of processing operating on more and more abstract representations of the visual scene. This has been successfully copied in computer vision systems, In contrast, kernel-based learning algorithms such as support vector machine (SVM) classifiers mark the state-of-the art in pattern recognition. They employ (Mercer) kernel functions to implicitly define a metric feature space for processing the input data, that is, the kernel defines the similarity between observations, in our case between medical images. Kernel methods are well understood theoretically and give excellent results in practice. However, they are usually considered to be `shallow' learning methods in the sense that they realize only a single layer of non-linear processing. This project will combine hierarchical image processing with the efficiency, theoretical beauty, and accuracy gain of SVMs for advancing the performance of medical imaging systems. This is made possible by marrying the applicants expertise in kernel-based machine learning with the widely recognized knowledge in medical image analysis at his new affiliation The Image Group at the Department of Computer Science, University of Copenhagen (DIKU).'

Altri progetti dello stesso programma (FP7-PEOPLE)

GRBANDAFTERGLOW (2008)

Gamma Ray Bursts and Their Afterglows

Read More  

MICPLASMAS (2012)

Microscopic Plasma Sources: Novel Diagnostics and Circuit Integration

Read More  

NSDSTF (2011)

NUMERICAL SIMULATION OF DEFORMABLE SOLIDS IN TURBULENT FLOW

Read More