PRONITROARAB

NO-dependent protein translocation and S-nitrosylation of nuclear proteins in Arabidopsis thaliana

 Coordinatore HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH 

 Organization address address: Ingolstaedter Landstrasse 1
city: MUENCHEN
postcode: 85764

contact info
Titolo: Dr.
Nome: Jürgen
Cognome: Ertel
Email: send email
Telefono: +49 89 3187 3022

 Nazionalità Coordinatore Germany [DE]
 Totale costo 174˙475 €
 EC contributo 174˙475 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-05-01   -   2014-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH

 Organization address address: Ingolstaedter Landstrasse 1
city: MUENCHEN
postcode: 85764

contact info
Titolo: Dr.
Nome: Jürgen
Cognome: Ertel
Email: send email
Telefono: +49 89 3187 3022

DE (MUENCHEN) coordinator 174˙475.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

oxide    function    defense    altered    chemical    regulated    translocation    last    plant    structural    regulatory    physiological    signalling    npr    proteins    protein    transcription    nitric    tga    binding    dependent    messenger   

 Obiettivo del progetto (Objective)

'During the last two decades nitric oxide (NO) has emerged as a new chemical messenger in plant biology, which is involved in regulation of many different physiological processes, such as plant defense, transpiration and gas exchange, seed germination, and root development. It is common that many of the biological functions of NO arise as a direct consequence of chemical reactions between proteins and NO or NO oxides. As result of this modification protein activities can be altered, ion channels, transcription factors and signalling proteins can be regulated, the conformation of structural proteins can be altered or proteins can be translocated. Protein translocation is a very important signalling mechanism and there are many reports about protein trafficking during different physiological processes published. However, less is known about NO-dependent protein translocation – especially in the plant field. Based on a proteomics approach we want to investigate the NO-dependent translocation of proteins into the nucleus. Furthermore, a map of nuclear proteins should be generated, which are candidates for protein S-nitrosylation. Besides these proteomic approaches the NPR1/TGA1 system, which is known to be regulated by nitric oxide, will be analysed in more detail. The bZIP transcription factor TGA1 and the regulatory protein NPR1 together are playing a crucial role in SAR during the inducible plant defense response. 3D structures of both proteins will be determined in presence of nitric oxide, to analyse the structural alteration, which result in more effective DNA-binding activity of TGA1. The aim of these studies is to get insight into the regulatory function of NO in gene transcription.'

Introduzione (Teaser)

In the last 20 years, nitric oxide (NO) has been identified as an important chemical messenger in plants. Using a combination of biochemical and bioinformatics approach EU-funded research has identified thousands of potential target proteins and specific binding sites, opening the door to tests of function.

Altri progetti dello stesso programma (FP7-PEOPLE)

MULTIPOL (2013)

Multifunctional Metallomesogenic Polymers

Read More  

F.A.U.S.T. (2013)

Flexible Application of Uncertainty for Scanning and Tracking

Read More  

CSC PROGRAM (2010)

Intestinal stem cells and their role in colorectal cancer progression

Read More