Coordinatore | TURKIYE BILIMSEL VE TEKNOLOJIK ARASTIRMA KURUMU
Organization address
address: Ataturk Bulvari 221 contact info |
Nazionalità Coordinatore | Turkey [TR] |
Totale costo | 75˙000 € |
EC contributo | 75˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2011-CIG |
Funding Scheme | MC-CIG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-04-01 - 2015-03-31 |
# | ||||
---|---|---|---|---|
1 |
TURKIYE BILIMSEL VE TEKNOLOJIK ARASTIRMA KURUMU
Organization address
address: Ataturk Bulvari 221 contact info |
TR (ANKARA) | coordinator | 75˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The objective of this work is to prepare ITO free transparent conductive electrodes on glass and polyethylene terephthalate (PET) substrate via layer-by-layer deposition (LBL) of carbon nanotubes (CNTs) and to utilize the prepared electrode for solar cell devices. First, CNTs will be chemically functionalized with carboxylic acid and amine groups. Next, the substrates will be subjected to oxygen plasma etching to introduce hydroxyl groups, followed by immersing in gamma-APS (3-aminopropyltriethoxysilane) solution. Then, CNT multilayer will be formed on the gamma-APS modified substrate via LBL deposition of carboxylic acid and amine functionalized CNTs alternatively. The deposition conditions will be optimized by measuring the sheet resistance and optical transmission and it will be compared with standart ITO values. In addition, film thickness and morphology will be investigated with ellipsometry and AFM, respectively. Moreover, the CNT multilayer film on the substrate (glass and PET) will be subjected to adhesion and chemical resistance test, and to mechanical bending tests for PET substrate. Finally, solar cell device will be fabricated on the CNT multilayer electrode by using commercial photoactive polymers. The electrical properties and device efficiency values will be investigated and compered with the one with ITO coated substrate. Here, I believe that this proposal is very relevant to the work programme since it includes material science, nanoscience, and optoelectronic and energy device application, which are known to be among the core topics of FP7 programme. Also, the CIG programme is very relevant to myself since i started my career in Turkey (associate country of FP7 programme) as a fresh PhD holder after i came back from South Korea, where i resided and completed PhD work.'