Coordinatore | TECHNISCHE UNIVERSITAET KAISERSLAUTERN
Organization address
address: GOTTLIEB-DAIMLER-STRASSE Geb. 47 contact info |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 174˙475 € |
EC contributo | 174˙475 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2011-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-10-01 - 2014-11-09 |
# | ||||
---|---|---|---|---|
1 |
TECHNISCHE UNIVERSITAET KAISERSLAUTERN
Organization address
address: GOTTLIEB-DAIMLER-STRASSE Geb. 47 contact info |
DE (KAISERSLAUTERN) | coordinator | 174˙475.20 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The goal of the proposed IEF project is to develop a novel Density Functional Theory (DFT) method, which will facilitate the very efficient investigation of large macromolecules. DFT is the most used quantum chemical method today, as it allows, at a low computational cost, to perform research at a quantum chemical level on systems containing up to thousands of atoms. However, standard DFT only includes a poor description of dispersion interactions, which occur in systems such as peptides, DNA base-pairs, graphene layers and heterogeneous catalysts. To overcome this great disadvantage the IEF will: a) transform a model for evaluation of dispersion energies at DFT level into a pragmatic and accurate methodology. b) implement the methodology, through design and application of advanced computational chemistry techniques into an efficient and user-friendly software. c) apply this novel DFT method on high-profile problems (nanocatalysts, biomolecules, graphene layers) The results will directly impact research in biochemistry, material science, catalysis and supramolecular chemistry boosting fast and accurate studies on numerous macromolecular systems. The applicant is an expert in DFT, who will complement her skills in Computational Chemistry and design of methods within the Theoretical Chemistry Group at the University of Kaiserslautern (Germany), who are leading scientists in the field. These investigations will allow the fellow to acquire excellent expertise in a pioneering research topic, which is of crucial importance for the worldwide efforts for using macromolecules in innovative technologies. In combination with the complementary training, this IEF project will help the applicant to obtain scientific maturity and actively participate in shaping future research regarding DFT methodologies for large systems, which is a rapidly emerging field. Consequently, the IEF perfectly consolidates the fellow’s long-term aim to reach an independent research position in Europe'
EU-funded scientists have extended one of the most important quantum chemical methods in use today to overcome a serious limitation. The open source software will be applicable to large systems such as peptides for novel insights.
One of the most powerful quantum chemical methods available to scientists is density functional theory (DFT). Its elegant simplicity is combined with a direct tie to the experimentally observable quantity, electron density. Together, this makes it possible to solve problems faster and to address challenges inaccessible with other methods.
Scientists working on the project BOOSTQUANTUMCHEM addressed its single most important drawback. Until now, DFT was unable to adequately describe van der Waals forces or interactions, relatively weak net inter- and intramolecular forces that play a fundamental role in the chemical character of compounds. These result from quantum dynamical correlations in fluctuating polarisations of nearby particles.
DFT is currently the only method that can be applied to systems of extensive size such as peptides, nanotubes and graphene layers. However, it did not accurately account for the van der Waals interactions, in particular London dispersion that is often a determining factor of the stability of such systems.
Scientists developed a novel method (BH-DFT-D) through addition of an energy correction derived from non-local information via intermolecular perturbation theory. The method's strength comes from its strongly non-empirical nature, using quantities calculated from first principles of quantum mechanics.
In its final form, the BH-DFT-D method combines commercial quantum chemical software with the open source software developed by project scientists. It is widely applicable to problems in catalysis, physical, medicinal, polymer and biochemistry, and materials science. BOOSTQUANTUMCHEM outcomes will make a major contribution to the efficient investigation and reliable description of the characteristics and behaviours of large macromolecules.