MIRSS

Parametric fiber-based Mid-IR Swept-Source

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Dr.
Nome: Luciana
Cognome: Vaccaro
Email: send email
Telefono: +41 21 693 55 82
Fax: +41 21 693 55 83

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 75˙000 €
 EC contributo 75˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-05-01   -   2015-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Dr.
Nome: Luciana
Cognome: Vaccaro
Email: send email
Telefono: +41 21 693 55 82
Fax: +41 21 693 55 83

CH (LAUSANNE) coordinator 75˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

zblan    speed    quality    wavelength    region    source    ir    combine    near    sweep    swept    mid    gain    um    parametric    transparency    fiber   

 Obiettivo del progetto (Objective)

'The middle infrared (mid-IR) wavelength region between 2-5um is of great interest due to a wide variety of applications such as spectroscopy, or free-space communications and demand for high quality mid-IR lasers has significantly increased over the last decades. In conjunction, the ability to rapidly sweep wavelength has fueled many major developments such as real-time fiber sensor examination and chemical sensing. While significant research efforts are being funneled in the design of mid-IR sources, the need for compact and robust mid-IR wavelength swept source is ever present. The present proposal is aimed at fulfilling this need by designing a novel fiber based mid-IR wavelength swept source. A typical swept source is divided into two distinct components (gain medium and tunable filter) which hinders the tunablity and speed of the device. We thus propose to combine the two in a single element, eliminating these limitations. Combining gain and filtering is a concept supported by narrowband fiber optic parametric amplifier which has the definitive advantage that its gain spectrum is only limited by the transparency of the waveguide used. We therefore propose the use of heavy metal fluoride glass ZBLAN, with transparency up to 5um, inside a parametric oscillator pumped by a near-IR source. This constitutes a novel and promising approach which will combine mature near-IR devices with mid-IR materials in order to transfer near-IR performances to the region of interest. Mid-IR wavelength sweep will be directly controlled by the wavelength-swept near-IR pump for ease of use. A speed up inherent to four wave mixing will enable high sweeping speeds while maintaining high quality light generation. The proposal will thus explore phase matching in ZBLAN based narrow band parametric amplifiers while simulation and experimental characterization will be performed. The performance of the designed mid-IR source and potential for spectroscopic application will be assessed.'

Altri progetti dello stesso programma (FP7-PEOPLE)

LIE-DIFF-GEOM (2013)

"Lie groups, differential equations and geometry"

Read More  

SEC POL TRANSFER (2009)

"Successful Security Policy Transfer - How and When? A Comparative Study of EU, British and US Policy Transfer to Greece on Terrorism and Organised Crime"

Read More  

AGGREGAT3 (2013)

Protein dynamics and misfolding: the case study of a multidomain protein related to an amyloid disease

Read More