HYSCORE

Hybrid quantum networks for spin coherent technologies

 Coordinatore TECHNISCHE UNIVERSITEIT DELFT 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-12-01   -   2017-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Dr.
Nome: Ronald
Cognome: Hanson
Email: send email
Telefono: +31 15 278 71 88

NL (DELFT) hostInstitution 1˙500˙000.00
2    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Ms.
Nome: Jose
Cognome: Van Vugt
Email: send email
Telefono: +31 15 278 7413

NL (DELFT) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

distance    technologies    solid    quantum    hyscore    goals    spins    networks    fundamental    spin    loop    nuclear    breakthroughs    registers   

 Obiettivo del progetto (Objective)

'Spins in solids are at the heart of fundamental physical phenomena such as magnetism. Today, they are harnessed in a range of technologies such as magnetic resonance imaging and spintronics for recording media. The revolutionary potential of future quantum technologies has fuelled research efforts to gain control of the quantum nature of spins. Thanks to a string of recent breakthroughs, it is now possible to initialize and read out individual spins in a solid, and to manipulate their dynamics using carefully defined control fields. However, all experiments to date have been limited to “open-loop” control on locally interacting few-spin systems, precluding efficient correction of noise and errors and preventing long-distance applications.

My HYSCORE project will realize two critical breakthroughs: “closing the loop” by performing quantum feedback and generating quantum entanglement between remote spins. These goals will allow for entering a new era, in which robustly controlled spin registers are connected to form true quantum networks.

To achieve these ambitious goals, I will exploit and combine the key strengths of different types of quantum information carriers: the robustness of nuclear spins for storage and core computational tasks, the optical interface of electron spins for initializing and reading the nuclear spin registers, and the mobility and coherence of photons for establishing truly long-distance links. Two promising solid-state platforms will be studied: nitrogen-vacancy defects in diamond and fluorine donors in zinc selenide. If successful, HYSCORE will yield novel methods for closed-loop quantum control, fundamental insights into quantum measurement, robust multi-qubit registers in a solid, and the establishment of elementary long-distance quantum networks.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NEARFIELDATTO (2014)

Attosecond physics at nanoscale metal tips - strong field physics in the near-field optics regime

Read More  

MEMBRANE (2013)

MEMS made Electron Emission Membranes

Read More  

DOS (2012)

Drugging the Undruggable: Discovery of Protein-Protein Interaction Modulators Using Diversity-Oriented Synthesis

Read More