ENIGMA

Enigma – Histone Deacetylase protein complex controls cardiac hypertrophy

 Coordinatore THE HEALTH CORPORATION - RAMBAM 

 Organization address address: HAALIYA 8
city: HAIFA
postcode: 31096

contact info
Titolo: Ms.
Nome: Ronya
Cognome: Rubinstien
Email: send email
Telefono: 97248541668

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-07-01   -   2016-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEALTH CORPORATION - RAMBAM

 Organization address address: HAALIYA 8
city: HAIFA
postcode: 31096

contact info
Titolo: Ms.
Nome: Ronya
Cognome: Rubinstien
Email: send email
Telefono: 97248541668

IL (HAIFA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

biological    protein    hdac    biology    cardiac    histone    pdz    hdacs    lim    ternary    bind    examine    vivo    iia    preliminary    enigma    class    hypothesis    domain    heart    hypertrophy    determine    cardiomyocytes   

 Obiettivo del progetto (Objective)

'A variety of cardiovascular disorders provoke the heart to enlarge through hypertrophic growth of cardiomyocytes, resulting in heart failure and sudden death. Based on in vivo and in vitro models of cardiac hypertrophy, it is apparent that histone-modifying enzymes act as key regulators of cardiac growth. Although their upstream regulation has been studied, the mechanism whereby class IIa Histone deacetylases (HDACs) repress transcription has not been elucidated.

In preliminary studies, we performed an association screen with the Class IIa HDAC4 and a heart cDNA library, and identified the protein ENIGMA as an HDAC4 binding partner. Further studies showed that other PDZ and LIM proteins do not bind class IIa HDACs, and that ENIGMA can bind class I HDACs with its PDZ domain and class IIa HDACs with its 3LIM domain. These novel preliminary results give rise to our main hypothesis that Enigma is a protein scaffold anchoring class I HDACs to class IIa HDACs to create a complex with high deacetylase activity that represses cardiac hypertrophy.

A combination of detailed studies will be conducted to gain an understanding of the composition of this protein complex and its biological role. Specifically, I propose to (1) map the interactions between class IIa HDACs and ENIGMA in detail; (2) determine the endogenous class I HDACs-ENIGMA-Class IIa HDACs' ternary complex; and (3) determine the role of the ENIGMA complex in suppressing hypertrophy in vivo.

Multidisciplinary approaches will be used to examine this hypothesis. Biochemical and molecular biology methods, as well as yeast assays, will be used to assess the interaction between ENIGMA and the HDACs. Further cell biology studies will examine the biological role of the ENIGMA ternary complex in cardiomyocytes in primary cultures, using a novel tissue engineered cardiac construct, and using a gene targeted mouse model. These studies will provide important insights into the mechanisms of cardiac hypertrophy.'

Altri progetti dello stesso programma (FP7-PEOPLE)

NET-LYSIS (2014)

Degradation of Neutrophil Extracellular Traps and its impact on thrombolysis

Read More  

PEQUPHOT (2012)

Plasmonically-enhanced Quantum Dot Photodetectors

Read More  

ASAMBA (2015)

ASAMBA: AsteroSeismic Approach Towards Understanding Massive Blue SupergiAnts

Read More