NONARCOMP

From complex to non-archimedean geometry

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 787˙232 €
 EC contributo 787˙232 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-10-01   -   2017-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Charles
Cognome: Favre
Email: send email
Telefono: +33 1 69334913
Fax: +33 1 69334949

FR (PARIS) hostInstitution 787˙232.50
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mrs.
Nome: Claire
Cognome: Boulc'h
Email: send email
Telefono: +33 1 45075158
Fax: +33 1 45075335

FR (PARIS) hostInstitution 787˙232.50

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

archimedean    geometry    rational    dynamical    spaces    dimensions    techniques    arbitrary    maps    theory    analytic   

 Obiettivo del progetto (Objective)

'Complex geometry is the study of manifolds that are defined over the complex numbers. Non-archimedean geometry is concerned with analytic spaces over fields endowed with a norm that satisfies the strong triangular inequality. The aim of this proposal is to explore the interactions between these seemingly different geometries with special emphasis on analytic and dynamical problems.

We specifically plan to develop pluripotential theory over non-archimedean fields. This includes the search for analogs of the celebrated Yau's theorem. In a more local setting, we shall also look for possible applications of non-archimedean techniques to the 'Openness Conjecture' on the structure of singularities of plurisubharmonic functions.

A second axis of research concerns the problem of growth of degrees of iterates of complex rational maps in arbitrary dimensions. We especially aim at extending to arbitrary dimensions the successful non-archimedean techniques that are already available for surfaces.

Finally we want to investigate the geometry of parameter spaces of complex dynamical systems acting on the Riemann sphere using non-archimedean methods. This requires the development of the bifurcation theory of non-archimedean rational maps.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

1ST-PRINCIPLES-DISCS (2013)

A First Principles Approach to Accretion Discs

Read More  

PROMICO (2013)

Proliferation and Migration under External Constraints

Read More  

ENTANGLED BALKANS (2009)

"Balkan Histories: Shared, Connected, Entangled"

Read More