RANDOM-KAHLER

"Kähler-Einstein metrics, random point processes and variational principles"

 Coordinatore CHALMERS TEKNISKA HOEGSKOLA AB 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 1˙200˙000 €
 EC contributo 1˙200˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB

 Organization address address: -
city: GOETEBORG
postcode: 41296

contact info
Titolo: Dr.
Nome: Robert
Cognome: Berman
Email: send email
Telefono: +46 31 7725347

SE (GOETEBORG) hostInstitution 1˙200˙000.00
2    CHALMERS TEKNISKA HOEGSKOLA AB

 Organization address address: -
city: GOETEBORG
postcode: 41296

contact info
Titolo: Ms.
Nome: Helena
Cognome: Rafstedt
Email: send email
Telefono: +46 31 7723507

SE (GOETEBORG) hostInstitution 1˙200˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

algebraic       data       gibbs    theory    metric    certain       random    geometry    hler    geometric    manifold    statistical    algebro    stability    canonical    probabilistic    fano    point    auml   

 Obiettivo del progetto (Objective)

'In broad terms the aim of this proposal is to introduce a new probabilistic approach to the study of Kähler-Einstein (K-E) metrics on complex manifolds. A precise procedure, based on a blend of Statistical Mechanics, Pluripotential theory and Kähler Geometry. will be used to show that

• when a K-E metric exists on a complex manifold X it can be obtained from the “large N limit” of certain canonical random point processes on X with N particles.

The canonical point processes are directly defined in terms of algebro-geometric data and the thrust of this approach is thus that it gives a new link between algebraic geometry on one and hand and complex differential (Kähler) geometry on the other. A major motivation for this project comes from the fundamental Yau-Tian-Donaldson conjecture in Kähler geometry, which aims at characterizing the obstructions to the existence of a K-E metric on a Fano manifold in terms of a suitable notion of algebro-geometric “stability”, notably K-Stability. In this project a new “probabilistic/statistical mechanical” version of stability will be introduced referred to as Gibbs stability, which also has an interesting purely algebro-geometric definition in the spirit of the Minimal Model Program in current algebraic geometry and another specific aim of this project is to prove or at least make substantial progress towards proving,

• There is a (unique) K-E metric on a Fano manifold X precisely when X is asymptotically Gibbs stable

The canonical random point processes will be defined as certain “beta-deformations” of determinantal point processes and share certain properties with the ones appearing in Random Matrix Theory and in the study of quantum chaos and zeroes of random polynomials (and random holomorphic sections) But a crucial new feature here is that the processes are independent of any back-ground data, such as a potential or a metric.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ABEL (2014)

"Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"

Read More  

FUNCTIONAL GENOMICS (2010)

DISSECTING GENETIC DEPENDENCIES IN CANCER

Read More  

FUTUREGENES (2010)

Gene transfer techniques in the treatment of cardiovascular diseases and malignant glioma

Read More