Coordinatore | FUNDACION IMDEA NANOCIENCIA
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Spain [ES] |
Totale costo | 1˙444˙999 € |
EC contributo | 1˙444˙999 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2012-StG_20111012 |
Funding Scheme | ERC-SG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-10-01 - 2017-09-30 |
# | ||||
---|---|---|---|---|
1 |
FUNDACION IMDEA NANOCIENCIA
Organization address
address: "CIUDAD UNIVERSITARIA CANTOBLANCO MODCIX, AVDA FRANCISCO TOMAS Y VALIENTE 7" contact info |
ES (MADRID) | hostInstitution | 1˙444˙999.20 |
2 |
FUNDACION IMDEA NANOCIENCIA
Organization address
address: "CIUDAD UNIVERSITARIA CANTOBLANCO MODCIX, AVDA FRANCISCO TOMAS Y VALIENTE 7" contact info |
ES (MADRID) | hostInstitution | 1˙444˙999.20 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'We present a plan to design, synthesize and exploit the properties of mechanically interlocked carbon nanotubes (MINTs). The scientific aim of the project is to introduce the mechanical bond as a new tool for the derivatization of carbon nanotubes. The mechanical link combines the advantages of covalent and supramolecular modifications, namely: kinetic stability (covalent) and conserved chemical structure (supramolecular). Besides this, its dynamic nature opens up unique opportunities for both fundamental studies and applications. From a technological point of view, MINTs should have a practical impact in the fields of molecular electronics and molecular machinery. A general modular approach to MINT-based materials for photovoltaic devices and electrochemical sensors is presented. We also expect to exploit the rigidity and low dimensionality of SWNTs to construct molecular machines that utilize them as tracks to move across long distances, which is not possible in small-molecule molecular machines. To achieve these goals we will exploit the PI’s expertise in the chemical modification of carbon nanostructures, in the self-assembly of electroactive materials and in the synthesis and characterization of mechanically interlocked molecules.'