ELIMINATESENESCENT

The Role of Elimination of Senescent Cells in Cancer Development

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-11-01   -   2017-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Dr.
Nome: Valery
Cognome: Krizhanovsky
Email: send email
Telefono: +972 8 934 6575
Fax: +972 8 934 4125

IL (REHOVOT) hostInstitution 1˙500˙000.00
2    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Ms.
Nome: Gabi
Cognome: Bernstein
Email: send email
Telefono: +972 8 934 6728
Fax: +972 8 934 4165

IL (REHOVOT) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

eliminate    molecular    senescent    cells    model    viability    tissue    immune    limits    elimination    senescence    autonomous    tumor    tumorigenesis    cell    mouse    cancer    regulating    mechanisms    vivo    progression    pathways    tissues    impact   

 Obiettivo del progetto (Objective)

'Cellular senescence, which is a terminal cell cycle arrest, is a potent tumor suppressor mechanism that limits cancer initiation and progression; it also limits tissue damage response. While senescence is protective in the cell autonomous manner, senescent cells secrete a variety of factors that lead to inflammation, tissue destruction and promote tumorigenesis and metastasis in the sites of their presence. Here we propose a unique approach – to eliminate senescent cells from tissues in order to prevent the deleterious cell non-autonomous effects of these cells. We will use our understanding in immune surveillance of senescent cells, and in cell-intrinsic molecular pathways regulating cell viability, to identify the molecular “Achilles’ heal” of senescent cells. We will identify the mechanisms of interaction of senescent cells with NK cells and other immune cells, and harness these mechanisms for elimination of senescent cells. The impact of components of the main pathways regulating cell viability, apoptosis and autophagy, will then be evaluated for their specific contribution to the viability of senescent cells. The molecular players identified by all these approaches will be readily implemented for the elimination of senescent cells in vivo. We will consequently be able to evaluate the impact of the elimination of senescent cells on tumor progression, in mouse models, where these cells are present during initial stages of tumorigenesis. Additionally, we will develop a novel mouse model that will allow identification of senescent cells in vivo in real time. This model is particularly challenging and valuable due to absence of single molecular marker for senescent cells. The ability to eliminate senescent cells will lead to the understanding of the role of presence of senescent cells in tissues and the mechanisms regulating their viability. This might suggest novel ways of cancer prevention and treatment.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

LABCHIP_MULTIPLEX (2010)

Simultaneous Detection of Multiple DNA and Protein Targets on Paramagnetic Beads Packed in Microfluidic Channels using Quantum Dots as Tracers

Read More  

ROBOT (2013)

Robust Organic Tectonics

Read More  

PHYLOCANCER (2014)

Phylogeography and somatic evolution of cancer tumor cells

Read More