INPEC

Interacting Photon Bose-Einstein Condensates in Variable Potentials

 Coordinatore RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙133˙560 €
 EC contributo 2˙133˙560 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Ms.
Nome: Daniela
Cognome: Hasenpusch
Email: send email
Telefono: +49 228 73 7274
Fax: +49 228 73 6479

DE (BONN) hostInstitution 2˙133˙560.00
2    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Prof.
Nome: Ernst Martin
Cognome: Weitz
Email: send email
Telefono: +49 228 73 4837
Fax: +49 228 73 3474

DE (BONN) hostInstitution 2˙133˙560.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

thermal    entangled    atomic    einstein    optical    photon    temperature    physics    gas    condensation    photons    manybody    macroscopic    potentials    ground    cavity    bose    quantum    equilibrium    bosonic    occupation    condensate   

 Obiettivo del progetto (Objective)

'Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has in the last two decades been observed in cold atomic gases and in solid-state physics quasiparticles. The perhaps most widely known example of a bosonic gas, photons in blackbody radiation, however exhibits no Bose-Einstein condensation, because the particle number is not conserved and at low temperatures the photons disappear in the system’s walls instead of massively occupying the cavity ground mode. This is not the case in a small optical cavity, with a low-frequency cutoff imprinting a spectrum of photon energies restricted to well above the thermal energy. Using a microscopic cavity filled with dye solution at room temperature, my group has recently observed the first Bose-Einstein condensate of photons.

Building upon this work, the grant applicant here proposes to study the physics of interacting photon Bose-Einstein condensates in variable potentials. We will study the flow of the light condensate around external perturbations, and exploit signatures for superfluidity of the two-dimensional photon gas. Moreover, the condensate will be loaded into variable potentials induced by optical index changes, forming a periodic array of nanocavities. We plan to investigate the Mott insulating regime, and study thermal equilibrium population of more complex entangled manybody states for the photon gas. Other than in an ultracold atomic gas system, loading and cooling can proceed throughout the lattice manipulation time in our system. We expect to be able to directly condense into a macroscopic occupation of highly entangled quantum states. This is an issue not achievable in present atomic physics Bose-Einstein condensation experiments. In the course of the project, quantum manybody states, when constituting the system ground state, will be macroscopically populated in a thermal equilibrium process.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SYNCOM (2012)

Distributed Computation in Synthetic Cellular Consortia

Read More  

SEPON (2008)

Search for emergent phenomena in oxide nanostructures

Read More  

JAGEUROPE (2013)

"The Jagiellonians: Dynasty, Identity and Memory in Central Europe"

Read More