CENTRIOLSTRUCTNUMBER

Control of Centriole Structure And Number

 Coordinatore FUNDACAO CALOUSTE GULBENKIAN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Portugal [PT]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091118
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACAO CALOUSTE GULBENKIAN

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Dr.
Nome: Monica
Cognome: Bettencourt Carvalho Dias
Email: send email
Telefono: +351 21440945
Fax: +351 214407970

PT (LISBOA) hostInstitution 1˙500˙000.00
2    FUNDACAO CALOUSTE GULBENKIAN

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Mr.
Nome: José Mário
Cognome: Leite
Email: send email
Telefono: +351 214407937
Fax: +351 214407970

PT (LISBOA) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cell    disease    variety    centriole    flagella    mechanisms    ciliopathies    us    cilia    fundamental    vitro    structure    molecular    questions    structures    players    cancer    mechanistic    human    assays   

 Obiettivo del progetto (Objective)

'Centrioles are essential for the formation of several microtubule organizing structures including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. Centrosome defects are seen in many cancers, while abnormalities in cilia and flagella can lead to a variety of human diseases, such as polycystic kidney disease. The molecular mechanisms regulating centriole biogenesis have only recently started to be unravelled, opening new ways to answer a wide range of questions that have fascinated biologists for more than a century. In this grant we are asking two fundamental questions that are central to human disease: how is centriole structure and number established and regulated in the eukaryotic cell? To address these questions we propose to identify new molecular players, and to test the role of these and known players in the context of specific mechanistic hypothesis, using in vitro and in vivo models. We propose to develop novel assays for centriole structure and regulation in order to address mechanistic problems not accessible with today s assays. In our search for novel components we will use a multidisciplinary approach combining bioinformatics with high throughput screening. The use of in vitro systems will permit the quantitative dissection of molecular mechanisms, while the study of those mechanisms in Drosophila will allow us to understand them at the whole organism level. Furthermore, this analysis, together with studies in human tissue culture cells, will allow us to understand the consequences of misregulation of these fundamental centriole properties for human disease, such as ciliopathies and cancer. My group is already collaborating with medical doctors in the study of centriole aberrations in human disease (cancer and ciliopathies), which will be invaluable to bringing the results of this study to the translational level.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CEPODRO (2008)

Cell polarization in Drosophila

Read More  

PHYS.LSS (2009)

Cosmological Physics with future large-scale structure surveys

Read More  

RNA-MAPS (2012)

Uncovering and understanding RNA through Massively Parallel Sequencing

Read More