VISUALISE

VISUAL MODELLING USING GANGLION CELLS

 Coordinatore UNIVERSITY OF ULSTER 

 Organization address address: University of Ulster at Jordanstown Room 2F19
city: Jordanstown
postcode: BT370QB

contact info
Titolo: Mr.
Nome: Max
Cognome: Morrow
Email: send email
Telefono: 442890000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙167˙148 €
 EC contributo 1˙669˙000 €
 Programma FP7-ICT
Specific Programme "Cooperation": Information and communication technologies
 Code Call FP7-ICT-2011-9
 Funding Scheme CP
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF ULSTER

 Organization address address: University of Ulster at Jordanstown Room 2F19
city: Jordanstown
postcode: BT370QB

contact info
Titolo: Mr.
Nome: Max
Cognome: Morrow
Email: send email
Telefono: 442890000000

UK (Jordanstown) coordinator 0.00
2    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

 Organization address address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
Nome: Sara
Cognome: Pittaluga
Email: send email
Telefono: +39 010 71781490

IT (GENOVA) participant 0.00
3    UNIVERSITAET ZUERICH

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Tobi
Cognome: Delbruck
Email: send email
Telefono: +41 446353038
Fax: 41446345351

CH (ZURICH) participant 0.00
4    UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS

 Organization address address: Robert-Koch-Strasse 40
city: GOETTINGEN
postcode: 37075

contact info
Titolo: Ms.
Nome: Christiane
Cognome: Hennecke
Email: send email
Telefono: 49551398770
Fax: 495514000000

DE (GOETTINGEN) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

retina    ganglion    principles    real    bio    cell    models    visual    retinal    biological    vision    time    environments    dynamic    sensors    inspired    natural    generation    cells    artificial    types    biology   

 Obiettivo del progetto (Objective)

The processing capabilities of biological visual systems are still vastly superior in terms of performance for real-time and low-power applications compared with conventional artificial vision. There is increasing evidence that biology has evolved a multitude of cell types, including at the level of the retina, to adapt to an extensive set of dynamic visual environments. Existing bio-inspired artificial vision technology has failed to consider the utility of modelling this rich diversity of cells, despite the fact that these cells are crucial to biology's ability to process the natural visual environment. To address this shortcoming, the VISUALISE project will create a refined understanding of retinal function in natural visual environments, enhanced models of biological signal processing in the retina and the next generation of bio-inspired asynchronous vision sensors.nnTo achieve these objectives we will combine the efforts of physiologists, computational neuroscientists, neuromorphic electronic engineers, and roboticists, to build novel theoretical and hardware models of biological retinal ganglion cell types for dynamic vision applications. We will 1) record the activities of vertebrate retinal ganglion cells using multi-electrode arrays under dynamic natural stimulation, 2) analyse the functional response properties to expose new principles of spike encoding that bridge the gap between single cell and population information processing, 3) exploit these principles in multi-scale mathematical models which permit efficient digital circuit implementations for a next generation of real-time event-based vision sensors, and 4) evaluate their effectiveness in a challenging predator-prey high-speed robot scenario.

Altri progetti dello stesso programma (FP7-ICT)

PLATON (2010)

Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing nin optical interconnects

Read More  

MAGIC (2008)

MAsk less lithoGraphy for IC manufacturing (MAGIC)

Read More  

SensHy (2008)

Photonic sensing of hydrocarbons based on innovative mid infrared lasers

Read More