VISUALISE

VISUAL MODELLING USING GANGLION CELLS

 Coordinatore UNIVERSITY OF ULSTER 

 Organization address address: University of Ulster at Jordanstown Room 2F19
city: Jordanstown
postcode: BT370QB

contact info
Titolo: Mr.
Nome: Max
Cognome: Morrow
Email: send email
Telefono: 442890000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙167˙148 €
 EC contributo 1˙669˙000 €
 Programma FP7-ICT
Specific Programme "Cooperation": Information and communication technologies
 Code Call FP7-ICT-2011-9
 Funding Scheme CP
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF ULSTER

 Organization address address: University of Ulster at Jordanstown Room 2F19
city: Jordanstown
postcode: BT370QB

contact info
Titolo: Mr.
Nome: Max
Cognome: Morrow
Email: send email
Telefono: 442890000000

UK (Jordanstown) coordinator 0.00
2    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

 Organization address address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
Nome: Sara
Cognome: Pittaluga
Email: send email
Telefono: +39 010 71781490

IT (GENOVA) participant 0.00
3    UNIVERSITAET ZUERICH

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Tobi
Cognome: Delbruck
Email: send email
Telefono: +41 446353038
Fax: 41446345351

CH (ZURICH) participant 0.00
4    UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS

 Organization address address: Robert-Koch-Strasse 40
city: GOETTINGEN
postcode: 37075

contact info
Titolo: Ms.
Nome: Christiane
Cognome: Hennecke
Email: send email
Telefono: 49551398770
Fax: 495514000000

DE (GOETTINGEN) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

retina    generation    time    natural    cells    artificial    biological    cell    ganglion    inspired    dynamic    principles    biology    vision    types    sensors    visual    models    real    retinal    bio    environments   

 Obiettivo del progetto (Objective)

The processing capabilities of biological visual systems are still vastly superior in terms of performance for real-time and low-power applications compared with conventional artificial vision. There is increasing evidence that biology has evolved a multitude of cell types, including at the level of the retina, to adapt to an extensive set of dynamic visual environments. Existing bio-inspired artificial vision technology has failed to consider the utility of modelling this rich diversity of cells, despite the fact that these cells are crucial to biology's ability to process the natural visual environment. To address this shortcoming, the VISUALISE project will create a refined understanding of retinal function in natural visual environments, enhanced models of biological signal processing in the retina and the next generation of bio-inspired asynchronous vision sensors.nnTo achieve these objectives we will combine the efforts of physiologists, computational neuroscientists, neuromorphic electronic engineers, and roboticists, to build novel theoretical and hardware models of biological retinal ganglion cell types for dynamic vision applications. We will 1) record the activities of vertebrate retinal ganglion cells using multi-electrode arrays under dynamic natural stimulation, 2) analyse the functional response properties to expose new principles of spike encoding that bridge the gap between single cell and population information processing, 3) exploit these principles in multi-scale mathematical models which permit efficient digital circuit implementations for a next generation of real-time event-based vision sensors, and 4) evaluate their effectiveness in a challenging predator-prey high-speed robot scenario.

Altri progetti dello stesso programma (FP7-ICT)

ROCKET (2008)

Reconfigurable OFDMA-based Cooperative NetworKs Enabled by Agile SpecTrum Use

Read More  

CoolEmAll (2011)

Platform for optimising the design and operation of modular configurable IT infrastructures and facilities with resource-efficient cooling

Read More  

FAST-DOT (2008)

COMPACT ULTRAFAST LASER SOURCES BASED ON NOVEL QUANTUM DOT STRUCTURES

Read More