M5C RNA

Cytosine-5 methylated RNAs as stem cell regulators in normal tissues and diseases

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙441˙945 €
 EC contributo 1˙441˙945 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-02-01   -   2018-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Dr.
Nome: Michaela
Cognome: Frye
Email: send email
Telefono: +44 1223760230
Fax: 441224000000

UK (CAMBRIDGE) hostInstitution 1˙441˙945.40
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) hostInstitution 1˙441˙945.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

regulation    tissues    species    disorders    stem    rnas    differentiation    cell       functions    cells    methylated    humans    rna    modification    whereas    modifications    transcriptional    dna    renewal    fate    post    self   

 Obiettivo del progetto (Objective)

'Stem cells differentiate into all mammalian tissues and organs during development, and remain present to maintain and replenish tissues throughout life. Stem cells continuously maintain their population (self-renewal) while generating progeny (differentiation). During self-renewal stem cells have to avoid cell cycle exit and differentiation; whereas during differentiation stem cells must evade uncontrolled proliferation. Dissecting the regulatory pathways controlling the balance between these two states is fundamental to understanding how stem cell mis-regulation causes human diseases. Although transcriptional regulation of stem cells is increasingly understood, virtually nothing is known about how post-transcriptional mechanisms can influence stem cell maintenance. Post-transcriptional modifications are commonly found in non-coding RNA species, yet the biological function is unknown. My previous studies identified cytosine-5 methylation (m5C) of RNA as a novel mechanism regulating stem cell fate. m5C is a widespread modification in both DNA and RNAs and their methyltransferases share many structural features. Whereas the functions of m5C in DNA have been extensively studied, the cellular and molecular functions of the same modified nucleobase in RNA remain unclear. Using a combination of system-wide approaches, mouse models and in vitro differentiation assays, we propose to (1) globally identify m5C in RNA species; (2) functionally analyze the roles of methylated versus non-methylated RNAs in stem cells; and (3) determine how aberrant m5C modifications can cause intellectual disability disorders in humans. Our comprehensive approach will answer how post-transcriptional modification control stem cell fate in normal tissues and might lead to the discovery of novel therapeutic strategies for neurological disorders in humans.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DROSOPIRNAS (2010)

The piRNA pathway in the Drosophila germline a small RNA based genome immune system

Read More  

MOLS@MOLS (2013)

Controlling Molecular Spin at the Molecular Scale

Read More  

AFTERTHEGOLDRUSH (2012)

Addressing global sustainability challenges by changing perceptions in catalyst design

Read More