HARMONY

"Harmonic identification, mitigation and control in power electronics based power systems"

 Coordinatore AALBORG UNIVERSITET 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Denmark [DK]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AALBORG UNIVERSITET

 Organization address address: FREDRIK BAJERS VEJ 5
city: AALBORG
postcode: 9220

contact info
Titolo: Mrs.
Nome: Anne
Cognome: Miltersen
Email: send email
Telefono: +45 99 40 97 68
Fax: +45 98 15 14 11

DK (AALBORG) hostInstitution 2˙500˙000.00
2    AALBORG UNIVERSITET

 Organization address address: FREDRIK BAJERS VEJ 5
city: AALBORG
postcode: 9220

contact info
Titolo: Prof.
Nome: Frede
Cognome: Blåbjerg
Email: send email
Telefono: +45 21 29 24 54
Fax: +45 98 15 14 11

DK (AALBORG) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

harmonics    stability    electronics    consumption    electricity    loads    energy    renewable    power    generation    transmission    global    sources    instability    efficient    harmonic    electrical   

 Obiettivo del progetto (Objective)

'Global electrical energy consumption is still increasing which demands that power capacity and power transmission capabilities must be doubled within 20 years. Today 40 % of the global energy consumption is processed by electricity in 2040 this may be up to 70 %. Electrical power production is changing from conventional, fossil based sources to renewable power resources. Highly efficient and sustainable power electronics in power generation, power transmission/distribution and end-user applications are introduced to ensure more efficient use of electricity. Traditional centralized electricity production with unidirectional power flows in transmission and distribution system will be replaced by the operation and control of intelligent distribution systems which are much more based on power electronics systems and having bidirectional power flow. Such large scale expansion of power electronics usage will change the characteristic of the power system by introducing more harmonics from generation, from the efficient load systems all resulting in a larger risk of instability and more losses in the future power system. The projects goal is to obtain “Harmony” between the renewable energy sources, the future power system and the loads in order to keep stability at all levels seen from a harmonic point of view. The project establishes the necessary theories, models and methods to identify harmonic problems in a power electronic based power system, a theoretical and hardware platform to enable control of harmonics and mitigate them, and develops on-line methods to monitor the harmonic state of the power system. The outcomes are new tools for identifying stability problems in power electronics based power systems and new control methods for reducing the harmonic presence and reduce the overall instability risks. Further, new design methods for active and passive filters in renewable energy systems, in the power system and in the power electronics based loads will be developed'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MOMB (2013)

Magneto-optics of layered materials: exploring many-body physics in electronic systems with unconventional bands

Read More  

LATTICE (2008)

Lattices in Computer Science

Read More  

CM TURNOVER (2012)

Uncovering the Mechanisms of Cardiomyocyte Differentiation and Dedifferentiation

Read More