BIMPC

Biologically-Inspired Massively-Parallel Computation

 Coordinatore THE UNIVERSITY OF MANCHESTER 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙399˙761 €
 EC contributo 2˙399˙761 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER

 Organization address address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL

contact info
Titolo: Ms.
Nome: Liz
Cognome: Fay
Email: send email
Telefono: 441613000000

UK (MANCHESTER) hostInstitution 2˙399˙761.00
2    THE UNIVERSITY OF MANCHESTER

 Organization address address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL

contact info
Titolo: Prof.
Nome: Stephen Byram
Cognome: Furber
Email: send email
Telefono: -6521

UK (MANCHESTER) hostInstitution 2˙399˙761.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fault    function    accelerate    asynchronous    levels    models    computation    massively    computing    us    reliability    inspired    brain    processors    upon    core    problem    parallel    intermediate   

 Obiettivo del progetto (Objective)

'We aim to establish a world-leading research capability in Europe for advancing novel models of asynchronous computation based upon principles inspired by brain function. This work will accelerate progress towards an understanding of how the potential of brain-inspired many-core architectures may be harnessed. The results will include new brain-inspired models of asynchronous computation and new brain- inspired approaches to fault-tolerance and reliability in complex computer systems.

Many-core processors are now established as the way forward for computing from embedded systems to supercomputers. An emerging problem with leading-edge silicon technology is a reduction in the yield and reliability of modern processors due to high variability in the manufacture of the components and interconnect as transistor geometries shrink towards atomic scales. We are faced with the longstanding problem of how to make use of a potentially large array of parallel processors, but with the new constraint that the individual elements are the system are inherently unreliable.

The human brain remains as one of the great frontiers of science – how does this organ upon which we all depend so critically actually do its job? A great deal is known about the underlying technology – the neuron – and we can observe large-scale brain activity through techniques such as magnetic resonance imaging, but this knowledge barely starts to tell us how the brain works. Something is happening at the intermediate levels of processing that we have yet to begin to understand, but the essence of the brain's massively-parallel information processing capabilities and robustness to component failure lies in these intermediate levels.

These two issues draws us towards two high-level research questions:

• Can our growing understanding of brain function point the way to more efficient parallel, fault-tolerant computing? • Can massively parallel computing resources accelerate our understanding of brain function'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BARRAGE (2010)

"Cell compartmentalization, individuation and diversity"

Read More  

BIOCOMPLEX (2010)

Physical Aspects of the Evolution of Biological Complexity

Read More  

QON (2008)

Quantum optics using nanostructures: from many-body physics to quantum information processing

Read More