RIGIDITY SENSING

Mechanisms of Cellular Rigidity Sensing

 Coordinatore TEL AVIV UNIVERSITY 

 Organization address address: RAMAT AVIV
city: TEL AVIV
postcode: 69978

contact info
Titolo: Ms.
Nome: Lea
Cognome: Pais
Email: send email
Telefono: 97236408774
Fax: 97236409697

 Nazionalità Coordinatore Israel [IL]
 Totale costo 264˙711 €
 EC contributo 264˙711 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2017-03-01

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY

 Organization address address: RAMAT AVIV
city: TEL AVIV
postcode: 69978

contact info
Titolo: Ms.
Nome: Lea
Cognome: Pais
Email: send email
Telefono: 97236408774
Fax: 97236409697

IL (TEL AVIV) coordinator 264˙711.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

differentiation    mechanosensing    cells    adhesions    transmit    sense    forces    integrin    signals    matrix    steps    critical    cancer    signaling    sensing    rigidity   

 Obiettivo del progetto (Objective)

'Recent studies show that the rigidity of the extracellular matrix is a critical determinant of cell growth, differentiation, and death. Cells sense rigidity via integrin adhesions and respond by changing their morphology, signaling, and gene expression patterns. Irregular rigidity signals or defective responses to appropriate rigidity signals underlie many medical disorders. This is especially evident in cancer, where the ability of cells to detect differences in matrix rigidity is fundamentally altered. Despite the importance of mechanosensing of matrix rigidity, findings in this field have been mainly phenomenological, and at the moment we still don’t know how rigidity sensing occurs. Active rigidity sensing involves development of traction forces on integrin adhesions, yet how cells develop forces, and how these forces are used to sense and transmit rigidity signals are both unknown. This grant is focused on analyses of the steps in building the machinery used by fibroblasts to sense and transmit rigidity signals. During the outgoing phase of the studies the applicant will use a combination of nanofabricated surfaces with integrin ligands, elastic micropillars that allow measuring forces, and super-resolution microscopy to define the critical steps in the assembly of integrin adhesions and to determine which proteins are essential for force production. The return phase of the studies will focus on investigating the signaling events downstream of rigidity sensing using biophysical measurements of the interaction kinetics of signaling molecules with integrin adhesions. The proposed studies will provide a detailed spatiotemporal description of the critical components and pathways of mechanosensing of matrix rigidity, and will help explain the underlying mechanisms involved in rigidity sensing during important processes such as differentiation or cancer.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SMART MUSE (2010)

Strategic Management tools for Art Museums

Read More  

MAGNETOTUBE (2014)

1D magnetic nanostructures using mineralizing peptides

Read More  

IFNDNA (2015)

Innate immune recognition of intracellular DNA as 'stranger' and 'danger' signal

Read More