Coordinatore |
Organization address
address: CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE contact info |
Nazionalità Coordinatore | Non specificata |
Totale costo | 100˙000 € |
EC contributo | 0 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-04-01 - 2017-03-31 |
# | ||||
---|---|---|---|---|
1 |
FUNDACION IMDEA MATERIALES
Organization address
address: CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE contact info |
ES (GETAFE) | coordinator | 100˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Fiber-reinforced polymers (FRP's), stronger per unit of weight than steel or aluminium, are highly demanded for high-performance applications. The use of FRP's in aerospace structures can lead to a significant reduction of maintenance costs, carbon imprint by fuel consumptions, COx and NOx emissions, etc. This is the reason why the last civil Airbus aircraft contains up to 52% in weight of composite materials and the Boeing 787 Dreamliner claims to be the first aircraft with a fully composite fuselage. However, composites materials presents several drawbacks that need to be overcome to fully take advantage of their excellent mechanical properties. From a mechanical perspective, aerospace composites are made of carbon fiber “plies” which are held together by a polymer. This polymer can crack easily, which results in the delamination of the plies and the failure of the structure if it is not detected on time. It is also required for aerospace materials to be protected from common environmental occurrences, such as lightning strikes, electromagnetic interferences, electrostatic discharge, etc. Various methods are used to address these concerns, such as the use of metallic meshes or foils. However, these meshes/screens are difficult to handle for both production and repairs, and increase significantly the overall weight of the aircraft. Here, I propose to develop a novel nano-architecture to enhance the mechanical and electrical properties of the composite in the through-the-thickness direction. This nano-architecture will also act as a sensing system, enabling damage detection and localization by resistive-heating based non-destructive evaluation. In summary, the nano-engineered composite proposed here is an intrinsically multifunctional material, with expected over the state-of-the-art mechanical and multifunctional properties.'
Science and Society: From a History of the “Emotional Images of DNA” to a Set of Multidisciplinary Actions for Disseminating Good Social Values in Europe
Read More"“Getting energy from Russia to Europe : Domestic political conditions in the energy-poor transit states of the former USSR and risks to energy transit to the European Union"""
Read MoreFunctorial and algebraic methods in the study of systems of linear partial differential equations
Read More