Coordinatore | LUNDS UNIVERSITET
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Sweden [SE] |
Totale costo | 1˙498˙699 € |
EC contributo | 1˙498˙699 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2012-StG_20111109 |
Funding Scheme | ERC-SG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-05-01 - 2018-04-30 |
# | ||||
---|---|---|---|---|
1 |
LUNDS UNIVERSITET
Organization address
address: Paradisgatan 5c contact info |
SE (LUND) | hostInstitution | 1˙498˙699.00 |
2 |
LUNDS UNIVERSITET
Organization address
address: Paradisgatan 5c contact info |
SE (LUND) | hostInstitution | 1˙498˙699.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Bacterial infections represent a major and global health problem, which is further aggravated by the rapid and ongoing increase in antibiotic resistance. The limited success in the development of targeted therapies for particular invasive strains can be attributed to our limited knowledge how pathogens modulate their proteome homeostasis in vivo, knowledge that has so far remained elusive due to technical limitations. Here I propose the use of proteome-wide selected reaction monitoring mass spectrometry (SRM-MS) for pathogen proteome profiling from samples obtained directly from in vivo using group A streptococci (GAS) as a model system. The proposal describes the use of SRM-MS to facilitate the construction of comprehensive and quantitative molecular anatomy knowledge models outlining spatial organization, pathway organization, absolute protein concentration estimations and interaction partners with host for complete microbial proteomes. Using the molecular anatomy as benchmark I intend compare how the proteome homeostasis is controlled in pathogens isolated directly from patients with different degree of disease severity to understand how disease severity, anatomical location and host dependencies effects the proteome homeostasis. The outlined proposal describes a generic strategy to provide comprehensive understanding of the pathogen adaption directly in vivo and represents a paradigm shift in the field of bacterial infectious disease. This proposal addresses central aspects within the medical microbiology field that has been long sought for but never studied due to technology limitations and will influence the development of the next generation targeted vaccine and therapeutic development programs.'