VIAMASS

Visual Recognition Made Super-Scalable

 Coordinatore INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙498˙627 €
 EC contributo 1˙498˙627 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2019-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Dr.
Nome: Herve
Cognome: Jegou
Email: send email
Telefono: 33299842272
Fax: 33299847171

FR (LE CHESNAY Cedex) hostInstitution 1˙498˙627.00
2    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Mr.
Nome: Jean-Paul
Cognome: Guillois
Email: send email
Telefono: 33299847248
Fax: 33399847171

FR (LE CHESNAY Cedex) hostInstitution 1˙498˙627.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

search    respect    recognition    context    automatic    links    automatically    image    images    representation    viamass    visual    mining    signal    collection    objects    complexity    recent   

 Obiettivo del progetto (Objective)

'Hundreds of billions of images are hosted on the World Wide Web. There is a huge interest in mining information in large image collections based on visual content. Direct applications are the automatic organization of visual datasets, visual navigation, object recognition, and the traditional query-by-sample search.

Although recent breakthroughs allow the search in millions of images on a single server with increasing quality, the accuracy of automatic recognition remains low compared to human’s visual analysis. I believe that significant progress is still achievable by a major shift in the paradigm underpinning the image representation: an image should be described with respect to the context provided by the image collection.

The main objective of VIAMASS is to automatically discover visual links within a very large collection of images. These “visual hyper-links” will connect the objects across the images of the collection. This raises a major obstacle with respect to scalability: cross matching all the images is of quadratic complexity when performed with a brute-force approach. To this end, VIAMASS addresses issues at the frontier of the current state of the art in computer vision and signal processing: How to exploit the context provided by the collection to enrich the image representation? How to exploit and magnify recent signal processing and coding techniques to efficiently compare sets of vectors? How to automatically produce geometrical models of objects with little or no supervision? At the end, the ultimate challenge is to invent scalable solutions for the automatic discovery of visual links across images.

My research program impacts the whole processing chain of visual search, from the description level to the mining algorithms that will break the complexity lock.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PROPHET (2011)

"Simplifying Development and Deployment of High-Performance, Reliable Distributed Systems"

Read More  

ATTENTIONCIRCUITS (2014)

Modulation of neocortical microcircuits for attention

Read More  

TWISTS (2014)

Twists & more: the complex shape of light

Read More