Coordinatore | UNIVERSIDAD CARLOS III DE MADRID
Organization address
address: CALLE MADRID 126 contact info |
Nazionalità Coordinatore | Spain [ES] |
Totale costo | 100˙000 € |
EC contributo | 100˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2012-CIG |
Funding Scheme | MC-CIG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-06-15 - 2017-06-14 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSIDAD CARLOS III DE MADRID
Organization address
address: CALLE MADRID 126 contact info |
ES (GETAFE (MADRID)) | coordinator | 100˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'In recent years the use of 3D imaging approaches is becoming a necessity, in particular now that research has moved onto dynamic imaging of biological processes in-vivo. In this context, novel tomography techniques such as Fluorescence Molecular Tomography (FMT) for imaging in highly scattering media, and Optical Projection Tomography (OPT) and Selective Plane Illumination Microscopy (SPIM) for imaging in low scattering specimens, are becoming extremely valuable tools in the biology and preclinical labs. However, all these approaches suffer from the same drawback: lack of throughput. This proposal addresses the issue of high-throughput which is currently the bottleneck for the translation of optical tomography as a mainstream imaging technique. The main goal is to improve these setups in order to ensure several subjects can be imaged simultaneously. These changes require significant advances at the software and theoretical levels in addition to specific hardware changes. Main changes will consist on the use of structured illumination and a collection of mirrors and beamsplitters for FMT, and the addition of a vertical displacement in OPT and SPIM to allow stacking of specimens. These changes in hardware need to be accounted for in new inverse models to recover the 3D distribution of fluorophores in-vivo, accounting for the presence of scattering. In order to ensure high-throughput fast inverse algorithms will be developed making use of parallel programming with Graphics Processing Unitgs (GPUs).'