HIGH THROUGHPUT TOMO

High Throughput Optical Tomography

 Coordinatore UNIVERSIDAD CARLOS III DE MADRID 

 Organization address address: CALLE MADRID 126
city: GETAFE (MADRID)
postcode: 28903

contact info
Titolo: Ms.
Nome: García Beato
Cognome: Regina
Email: send email
Telefono: +34 91 624 9931
Fax: +34 91 624 9930

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-06-15   -   2017-06-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSIDAD CARLOS III DE MADRID

 Organization address address: CALLE MADRID 126
city: GETAFE (MADRID)
postcode: 28903

contact info
Titolo: Ms.
Nome: García Beato
Cognome: Regina
Email: send email
Telefono: +34 91 624 9931
Fax: +34 91 624 9930

ES (GETAFE (MADRID)) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

imaging    throughput    fmt    specimens    vivo    opt    inverse    scattering    hardware    addition    illumination    optical    spim    tomography    becoming   

 Obiettivo del progetto (Objective)

'In recent years the use of 3D imaging approaches is becoming a necessity, in particular now that research has moved onto dynamic imaging of biological processes in-vivo. In this context, novel tomography techniques such as Fluorescence Molecular Tomography (FMT) for imaging in highly scattering media, and Optical Projection Tomography (OPT) and Selective Plane Illumination Microscopy (SPIM) for imaging in low scattering specimens, are becoming extremely valuable tools in the biology and preclinical labs. However, all these approaches suffer from the same drawback: lack of throughput. This proposal addresses the issue of high-throughput which is currently the bottleneck for the translation of optical tomography as a mainstream imaging technique. The main goal is to improve these setups in order to ensure several subjects can be imaged simultaneously. These changes require significant advances at the software and theoretical levels in addition to specific hardware changes. Main changes will consist on the use of structured illumination and a collection of mirrors and beamsplitters for FMT, and the addition of a vertical displacement in OPT and SPIM to allow stacking of specimens. These changes in hardware need to be accounted for in new inverse models to recover the 3D distribution of fluorophores in-vivo, accounting for the presence of scattering. In order to ensure high-throughput fast inverse algorithms will be developed making use of parallel programming with Graphics Processing Unitgs (GPUs).'

Altri progetti dello stesso programma (FP7-PEOPLE)

ADSORPLAYERS (2013)

"Adsorbed Layers of Natural Organic Macromolecules on Solid Substrates: Structure, Interactions, and Mechanisms of Growth"

Read More  

GLOW (2013)

New weather-stable low gloss powder coatings based on bifunctional acrylic solid resins and nanoadditives

Read More  

CHILTURPOL2 (2011)

Innovative materials and methods for water treatment

Read More