MAGMA DEGASSING

Defusing volcanic eruptions: the escape of volcanic gas

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙604˙211 €
 EC contributo 1˙604˙211 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-05-01   -   2018-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Dr.
Nome: Kim
Cognome: Berlo
Email: send email
Telefono: +44 1865 272011
Fax: +44 1865 272072

UK (OXFORD) hostInstitution 1˙604˙211.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 1˙604˙211.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fast    eruption    magma    emissions    metals    magmatic    partition    ore    model    moreover    gas    escape    volatiles    melt    metal    gases    volcanic    erupted    degassing   

 Obiettivo del progetto (Objective)

'Volcanic eruptions are driven by the exsolution and escape of dissolved volatiles. Fast and efficient escape of volatiles leads to a lower potential for an explosive eruption: defusing it. Yet, despite recognition of the importance of volatile escape, the mechanisms and kinetics of degassing remain unclear. This study aims to use a pioneering approach to reconstruct the escape of volcanic gases. Exsolved gases are ephemeral and do not survive eruption. However textural evidence such as vesicles, fractures and veins in erupted magma lingers. Moreover, new data shows that chemical signals of degassing endure, not only in minerals, but also in quenched melt. Volcanic gases are enriched in metals such as Hg, Tl, and Cu resulting in ore deposits and contributing to global metal emissions. Such enrichment is based on the preference of these metals for a gas phase. This project will establish how metals partition between volcanic gas and melt (basalt and rhyolite), how quickly such equilibrium partitioning is reached, and what can be learned regarding magma degassing from gas emissions and melt compositions as measured at volcanoes. The first part of the project focuses on obtaining gas-melt partition coefficients and diffusivities of metals. The second part of the project involves comparison to natural samples. Metal concentration variations will be mapped within an exposed magmatic conduit and in recent explosively erupted volcanic rocks. The third part of the project aims to model the escape of volcanic gases using reactive flow modeling. The combined results of this project will not only show how and how fast volcanic gases escape, but also form the basis of a new approach to quantifying historic (from glass shards) and future (from gas emissions) magmatic metal release to potential ore forming systems as well as to the atmosphere. Moreover, linking gas chemistry to dynamic degassing processes in a quantitative model will aid prediction of eruption style and timing.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DIAMOND (2011)

Discovery and Insight with Advanced Models Of Nanoscale Dimensions

Read More  

NANOCELLIMAGE (2011)

Ultrasmall Chemical Imaging of Cells and Vesicular Release

Read More  

POLAR (2011)

Polar Molecules: From Ultracold Chemistry to Novel Quantum Phases

Read More